Pig bedding biochar(PBBC)and Cd-enriched Perilla frutescenswere used for joint remediation of Cd-contaminated soil.Cd-contaminated soil was treated with different concentration of PBBC.The physiological and biochemica...Pig bedding biochar(PBBC)and Cd-enriched Perilla frutescenswere used for joint remediation of Cd-contaminated soil.Cd-contaminated soil was treated with different concentration of PBBC.The physiological and biochemical indicators of P.frutescens was evaluated under different Cd stress,including biomass,antioxidant system.Meanwhile Cd bioavailability,enzyme activity and nutrient bioavailability of the soil were monitored.Results revealed that PBBC at 1%and 5%levels led to decreased diethylenetriaminepentaacetic acid-extractable Cd(DTPA-Cd)content in soil by 19.09%-20.05%and 30.10%-47.08%,respectively.Moreover,PBBC promoted the transformation of exchangeable Cd(EXC-Cd)into a more stable form,enhanced soil enzymes(peroxidase,acid phosphatase,urease,and sucrase)activities,and alleviated P.frutescens's oxidative stress.PBBC increased its biomass,consequently enhancing Cd accumulation in the plant's,thereby improving Phytoextraction rate(PER).1%PBBC showed the best effect,with a total biomass increased 21.42%-26.94%,PERwas enhanced by 39.83%-54.82%.This study justifies that the combining PBBC with P.frutescens enhances Cd removal fromsoil,making the PBBC-P.frutescens a promising choice for treating Cd-polluted soil.展开更多
All-inorganic cesium lead halide perovskite nanocrystals(CsPbX_(3),X=Cl,Br,I)have attracted considerable scientific and technological interest due to their precise bandgap tunability,high color purity and efficient lu...All-inorganic cesium lead halide perovskite nanocrystals(CsPbX_(3),X=Cl,Br,I)have attracted considerable scientific and technological interest due to their precise bandgap tunability,high color purity and efficient luminescence.Nevertheless,their poor stability in harsh conditions such as moisture,ultraviolet(UV)light irradiation and high temperature,is a major obstacle for their further commercial applications.Herein,by simply using a new type of precursor,namely“HPbX_(3)”(X=Cl,Br,I),we can achieve the coordination equilibrium for Pb precursors during reaction and obtain high-quality perovskite nanocrystals with tremendously enhanced luminous efficiency and chemical stability based on hot-injection method.The prepared a-CsPbb nanocrystals exhibit an extremely high photoluminescence quantum yield of 96%and keep stable in air for more than two months without any post-synthesis treatment.Moreover,stability evaluations under UV light irradiation,water or thermal impact are also performed and the results show substantially improved stability of these nanocrystals as compared with the samples prepared using traditional Pbl_(2) as precursor.Through temperature-dependent(10-300 K)steady and transient spectral analysis combined with compositional measurements,it is revealed that the lower structural defect density,which is guaranteed by abundant halogen when using HPbX3 as precursor,is the most important reason for such performance enhancement.展开更多
For more than three decades, the quest for superconductivity in nickel oxides, also known as nickelates, has symbolized the unwavering dedication in search for an analogy to the Nobe Prize-winning high-temperature sup...For more than three decades, the quest for superconductivity in nickel oxides, also known as nickelates, has symbolized the unwavering dedication in search for an analogy to the Nobe Prize-winning high-temperature superconducting copper oxides, or cuprates [1].展开更多
基金supported by the Science and Technology Innovation of Fujian Agriculture and Forestry University(Nos.KFB23079 and KFB23065).
文摘Pig bedding biochar(PBBC)and Cd-enriched Perilla frutescenswere used for joint remediation of Cd-contaminated soil.Cd-contaminated soil was treated with different concentration of PBBC.The physiological and biochemical indicators of P.frutescens was evaluated under different Cd stress,including biomass,antioxidant system.Meanwhile Cd bioavailability,enzyme activity and nutrient bioavailability of the soil were monitored.Results revealed that PBBC at 1%and 5%levels led to decreased diethylenetriaminepentaacetic acid-extractable Cd(DTPA-Cd)content in soil by 19.09%-20.05%and 30.10%-47.08%,respectively.Moreover,PBBC promoted the transformation of exchangeable Cd(EXC-Cd)into a more stable form,enhanced soil enzymes(peroxidase,acid phosphatase,urease,and sucrase)activities,and alleviated P.frutescens's oxidative stress.PBBC increased its biomass,consequently enhancing Cd accumulation in the plant's,thereby improving Phytoextraction rate(PER).1%PBBC showed the best effect,with a total biomass increased 21.42%-26.94%,PERwas enhanced by 39.83%-54.82%.This study justifies that the combining PBBC with P.frutescens enhances Cd removal fromsoil,making the PBBC-P.frutescens a promising choice for treating Cd-polluted soil.
基金supported by the Priority Research Project of Xiamen(No.3502Z20191015)。
文摘All-inorganic cesium lead halide perovskite nanocrystals(CsPbX_(3),X=Cl,Br,I)have attracted considerable scientific and technological interest due to their precise bandgap tunability,high color purity and efficient luminescence.Nevertheless,their poor stability in harsh conditions such as moisture,ultraviolet(UV)light irradiation and high temperature,is a major obstacle for their further commercial applications.Herein,by simply using a new type of precursor,namely“HPbX_(3)”(X=Cl,Br,I),we can achieve the coordination equilibrium for Pb precursors during reaction and obtain high-quality perovskite nanocrystals with tremendously enhanced luminous efficiency and chemical stability based on hot-injection method.The prepared a-CsPbb nanocrystals exhibit an extremely high photoluminescence quantum yield of 96%and keep stable in air for more than two months without any post-synthesis treatment.Moreover,stability evaluations under UV light irradiation,water or thermal impact are also performed and the results show substantially improved stability of these nanocrystals as compared with the samples prepared using traditional Pbl_(2) as precursor.Through temperature-dependent(10-300 K)steady and transient spectral analysis combined with compositional measurements,it is revealed that the lower structural defect density,which is guaranteed by abundant halogen when using HPbX3 as precursor,is the most important reason for such performance enhancement.
文摘For more than three decades, the quest for superconductivity in nickel oxides, also known as nickelates, has symbolized the unwavering dedication in search for an analogy to the Nobe Prize-winning high-temperature superconducting copper oxides, or cuprates [1].