The stability and robustness of routing protocol implementations (RPI) in a router are becoming more and more important with the growth of Internet scale. A novel approach named stress testing is proposed to test the ...The stability and robustness of routing protocol implementations (RPI) in a router are becoming more and more important with the growth of Internet scale. A novel approach named stress testing is proposed to test the properties of RPI. Compared with some traditional test techniques, stress testing is remarkably necessary to inspect and analyze RPI. The test environment is proposed and the test process of OSPF RPI is illustrated by a stochastic Petri Net model with large-scale route simulation and OSPF protocol emulation. Based on this model, the integrated performance tester (IP-TEST) is designed and developed, with which we test a CISCO2600 router. With mathematical methods, we find that the computational complexity of OSPF implementation in this router is O((lnN) 4)to the number of its routing table entries. This experiment shows that this technique can inspect the stability, the computational complexity and the scalability of RPI. Furthermore, it can also be widely used with other routing protocols, such as RIP and BGP.展开更多
Active networks are a new kind of packet-switched networks in which packets have code fragments that are executed on the intermediary nodes (routers). The code can extend or modify the foundation architecture of a net...Active networks are a new kind of packet-switched networks in which packets have code fragments that are executed on the intermediary nodes (routers). The code can extend or modify the foundation architecture of a network. In this paper, the authors present a novel active network architecture combined with advantages of two major active networks technology based on extensible services router. The architecture consists of extensible service router, active extensible components server and key distribution center (KDC). Users can write extensible service components with programming interface. At the present time, we have finished the extensible services router prototype system based on Highly Efficient Router Operating System (HEROS), active extensible components server and KDC prototype system based on Linux.展开更多
With the rapid development of network technology, it is increasingly important to dynamically upgrade router’s software. In this paper, the authors present new software architecture to be applied to extensible servic...With the rapid development of network technology, it is increasingly important to dynamically upgrade router’s software. In this paper, the authors present new software architecture to be applied to extensible services router. The novel feature of the architecture is the ability to dynamically load and configure extensible components at run time. Each component implements one function such as packets classification, packets scheduling and routing protocol. We design a simple configuration language (ESRCL) to configure and manage the router. The architecture can be configured according to the packet flows. At present, a prototype system based on highly efficient router operating system (HEROS) has been finished.展开更多
文摘The stability and robustness of routing protocol implementations (RPI) in a router are becoming more and more important with the growth of Internet scale. A novel approach named stress testing is proposed to test the properties of RPI. Compared with some traditional test techniques, stress testing is remarkably necessary to inspect and analyze RPI. The test environment is proposed and the test process of OSPF RPI is illustrated by a stochastic Petri Net model with large-scale route simulation and OSPF protocol emulation. Based on this model, the integrated performance tester (IP-TEST) is designed and developed, with which we test a CISCO2600 router. With mathematical methods, we find that the computational complexity of OSPF implementation in this router is O((lnN) 4)to the number of its routing table entries. This experiment shows that this technique can inspect the stability, the computational complexity and the scalability of RPI. Furthermore, it can also be widely used with other routing protocols, such as RIP and BGP.
文摘Active networks are a new kind of packet-switched networks in which packets have code fragments that are executed on the intermediary nodes (routers). The code can extend or modify the foundation architecture of a network. In this paper, the authors present a novel active network architecture combined with advantages of two major active networks technology based on extensible services router. The architecture consists of extensible service router, active extensible components server and key distribution center (KDC). Users can write extensible service components with programming interface. At the present time, we have finished the extensible services router prototype system based on Highly Efficient Router Operating System (HEROS), active extensible components server and KDC prototype system based on Linux.
文摘With the rapid development of network technology, it is increasingly important to dynamically upgrade router’s software. In this paper, the authors present new software architecture to be applied to extensible services router. The novel feature of the architecture is the ability to dynamically load and configure extensible components at run time. Each component implements one function such as packets classification, packets scheduling and routing protocol. We design a simple configuration language (ESRCL) to configure and manage the router. The architecture can be configured according to the packet flows. At present, a prototype system based on highly efficient router operating system (HEROS) has been finished.