Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localizatio...Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.展开更多
Soft actuators are inherently flexible and compliant,traits that enhance their adaptability to diverse environments and tasks.However,their low structural stiffness can lead to unpredictable and uncontrollable complex...Soft actuators are inherently flexible and compliant,traits that enhance their adaptability to diverse environments and tasks.However,their low structural stiffness can lead to unpredictable and uncontrollable complex deformations when substantial force is required,compromising their load-bearing capacity.This work proposes a novel method that uses gecko setae-inspired adhesives as interlayer films to construct a layer jamming structure to adjust the stiffness of soft actuators.The mechanical behavior of a single tilted microcylinder was analyzed using the energy method to determine the adhesion force of the adhesives.The gecko-inspired adhesive was designed under the guidance of the adhesion force model.Testing under various loads and directions revealed that the tilted characteristic of microcylinders can enhance the adhesion force in its grasping direction.The adhesive demonstrated excellent adhesion performance compared to other typical adhesives.A tunable stiffness actuator using gecko setae-inspired adhesives(TSAGA),was developed with these adhesives serving as interlayer films.The stiffness model of TSAGA was derived by analyzing its axial compression force.The results of stiffness test indicate that the adhesives serve as interlayer films can adjust the stiffness in response to applied load.TSAGA was compared with other typical soft actuators in order to evaluate the stiffness performance,and the results indicate that TSAGA exhibits the highest stiffness and the widest tunable stiffness range.This demonstrates the superior performance of the setae-inspired adhesives as interlayer films in terms of stiffness adjustment.展开更多
Objective:To evaluate the predictive value of Modified Early Warning Score(MEWS)for neurological disease prognosis and identify prognostic factors.Methods:This retrospective study analyzed 768 neurological patients wi...Objective:To evaluate the predictive value of Modified Early Warning Score(MEWS)for neurological disease prognosis and identify prognostic factors.Methods:This retrospective study analyzed 768 neurological patients with MEWS≥4(June 2022–June 2024).Patients were stratified by outcomes(favorable/unfavorable).Multivariable logistic regression and ROC analysis were performed.Results:108 cases(13.1%)had unfavorable outcomes.Significant prognostic factors included:age,TBI history,onset-to-admission time,PT,MEWS score,and MEWS≥4 frequency(all P<0.05).MEWS showed AUC=0.749(sensitivity 62.0%,specificity 77.4%).Conclusion:MEWS demonstrates moderate predictive value(AUC=0.749)for neurological outcomes.Consciousness assessment limitations(56.5%impaired cases)may affect sensitivity.A specialized model incorporating pupillary reflexes and GCS is recommended for improved early warning.展开更多
Purpose–This paper focuses on studying the reliability allocation for the railway system,aiming to improve the overall reliability of the railway system and ensure safety operation.Design/methodology/approach–In vie...Purpose–This paper focuses on studying the reliability allocation for the railway system,aiming to improve the overall reliability of the railway system and ensure safety operation.Design/methodology/approach–In view of the complex structure of the railway system,involving many subsystems,this paper analyzes the close dynamic coupling effect between railway subsystems.Based on this,taking the railway system failure as the top event,a fault tree is constructed in this paper.Then,a reliability allocation method based on the fault tree is employed to allocate the reliability index.Finally,a numerical experiment is implemented to show the performance of the reliability allocation method.Findings–The results showed that each subsystem needs to improve its reliability to meet the specified railway system reliability requirements,and the traction power supply system is the most important subsystem,which is the most efficient in improving the reliability of the railway system.Originality/value–For the first time,starting from a holistic perspective of the system,reliability allocation is carried out based on the importance of each railway subsystem.展开更多
In recent years,research on nursing interruptions has been conducted at various levels in emergency departments,intensive care units,hemodialysis centers,operating rooms,and sterilization and supply centers.Nursing in...In recent years,research on nursing interruptions has been conducted at various levels in emergency departments,intensive care units,hemodialysis centers,operating rooms,and sterilization and supply centers.Nursing interruptions are closely related to adverse nursing events,and interruptions in operating room nursing can significantly impact the success of a patient’s surgery.However,there is a lack of in-depth theoretical research on safety risk assessment and response decision-making by operating room nurses when faced with nursing interruptions.This article reviews the concept,current status,and impact of nursing interruptions in the operating room,analyzes the cognitive level,coping strategies,and negative emotions of operating room nurses,and elaborates on management strategies to provide references for research and management of nursing interruptions in the operating room.展开更多
At present,transportation construction plays a certain promoting and driving role in the economic and social development of our country.At the same time,because of the accelerated pace of transportation construction,t...At present,transportation construction plays a certain promoting and driving role in the economic and social development of our country.At the same time,because of the accelerated pace of transportation construction,the traffic network structure of each region of China has gradually been optimized and perfected.This not only significantly improves people’s quality of life and living conditions,but also provides many conveniences for the transportation of goods.However,in the current process of highway construction and development in China,there is still a certain degree of danger,which will also significantly increase the probability of road safety problems occurring.Therefore,it is necessary to apply intelligent transportation technology to effectively enhance the safety of road use.As a result,this study provides a detailed analysis of the overview of intelligent transportation technology,the advantages of the application of intelligent transportation technology in traffic safety management,as well as an in-depth discussion of the role and application of intelligent transportation technology in traffic safety management.展开更多
Because of its high adsorption capacity, biochar has been used to stabilize metals when remediating contaminated soils; to date, however, it has seldom been used to remediate contaminated sediment. A biochar was used ...Because of its high adsorption capacity, biochar has been used to stabilize metals when remediating contaminated soils; to date, however, it has seldom been used to remediate contaminated sediment. A biochar was used as a stabilization agent to remediate Cu-and Pb-contaminated sediments, collected from three locations in or close to Beijing. The sediments were mixed with a palm sawdust gasified biochar at a range of weight ratios(2.5%, 5%, and 10%) and incubated for 10, 30, or 60 days. The performance of the different treatments and the heavy metal fractions in the sediments were assessed using four extraction methods, including diffusive gradients in thin films, the porewater concentration, a sequential extraction, and the toxicity characteristic leaching procedure. The results showed that biochar could enhance the stability of heavy metals in contaminated sediments. The degree of stability increased as both the dose of biochar and the incubation time increased. The sediment p H and the morphology of the metal crystals adsorbed onto the biochar changed as the contact time increased. Our results showed that adsorption,metal crystallization, and the p H were the main controls on the stabilization of metals in contaminated sediment by biochar.展开更多
Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing t...Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.展开更多
Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,...Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,we propose a new method for generating entanglement which is highly useful for multiparty quantum communications such as teleportation and Remote State Preparation(RSP).As one of its applications,we propose a new type of quantum secure communications,i.e.cyclic RSP protocols.Starting from a four-party controlled cyclic RSP protocol of one-qubit states,we show that this cyclic protocol can be generalized to a multiparty controlled cyclic RSP protocol for preparation of arbitrary qubit states.We point out that previous bidirectional and asymmetric protocols can be regarded as a simpler form of our cyclic RSP protocols.展开更多
Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant-and animal-based biomass under oxygen-limited conditions.Recently, there has been an increasing interest in ...Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant-and animal-based biomass under oxygen-limited conditions.Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications.Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects.But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment.展开更多
Early-stage brain metastasis of breast cancer(BMBC), due to the existence of an intact blood–brain barrier(BBB), is one of the deadliest neurologic complications. To improve the efficacy of chemotherapy for BMBC, a T...Early-stage brain metastasis of breast cancer(BMBC), due to the existence of an intact blood–brain barrier(BBB), is one of the deadliest neurologic complications. To improve the efficacy of chemotherapy for BMBC, a Trojan horse strategy-based nanocarrier has been developed by integrating the cell membrane of a brain-homing cancer cell and a polymeric drug depot. With the camouflage of a MDA-MB-231/Br cell membrane, doxorubicin-loaded poly(D, L-lactic-co-glycolic acid) nanoparticle(DOX-PLGA@CM) shows enhanced cellular uptake and boosted killing potency for MDA-MB-231/Br cells. Furthermore, DOX-PLGA@CM is equipped with naturally selected molecules for BBB penetration, as evidenced by its boosted capacity in entering the brain of both healthy and early-stage BMBC mouse models. Consequently, DOX-PLGA@CM effectively reaches the metastatic tumor lesions in the brain, slows down cancer progression, reduces tumor burden, and extends the survival time for the BMBC animal.Furthermore, the simplicity and easy scale-up of the design opens a new window for the treatment of BMBC and other brain metastatic cancers.展开更多
Bacterial blight(BB), which is caused by Xanthomonas oryzae pv. oryzae(Xoo), is an important rice disease responsible for significant yield losses. In the rice-growing regions of South China where BB outbreaks are com...Bacterial blight(BB), which is caused by Xanthomonas oryzae pv. oryzae(Xoo), is an important rice disease responsible for significant yield losses. In the rice-growing regions of South China where BB outbreaks are common, the resistance of cultivars with BB resistance genes Xa4 and Xa21 has been lost because of rapid changes in the Xoo population structure and virulence. In this study, 421 diverse rice accessions were evaluated regarding their resistance to two Xoo strains, namely GD1358(C5) and IV, which are prevalent pathotypes in South China and overcame the resistance of Xa4 and Xa21, respectively. Using the 4.8 mio filtered SNP dataset, we conducted a genome-wide association study, which identified 13 loci associated with BB resistance, including eight new quantitative trait loci(QTL) and five QTL harboring known BB resistance genes: Xa3/Xa26, xa5, Xa35(t), Xa36(t), Xa40, Xa43(t), and xa44(t). Intriguingly, a steep peak was detected on chromosomes 5 and 11. Six QTL including three new ones, were distributed on chromosome 11, whereas a new QTL q BB5.1 and a known QTL were detected on chromosome 5. Haplotype analyses indicated that the LOC;s05 g01610(Os PRAF2) gene within the q BB5.1 region, which encodes a PRAF protein, is associated with BB resistance. Furthermore, Os PRAF2 knockout lines generated using the CRISPR-Cpf1 system were significantly more resistant to Xoo strains than the wild-type plants. Our results provide researchers and breeders with useful information regarding QTL and gene resources,which may be relevant for developing new BB-resistant rice cultivars.展开更多
Grain size is one of the determinants of grain yield,and identifying the genetic loci that control grain size will be helpful for increasing grain yield.In our previous study,a quantitative trait locus(QTL)for grain l...Grain size is one of the determinants of grain yield,and identifying the genetic loci that control grain size will be helpful for increasing grain yield.In our previous study,a quantitative trait locus(QTL)for grain length(GL),QGl.cau-2D.1,was identified from an F2 population developed from the cross between the natural(TAA10)and synthetic(XX329)allohexaploid wheat.In the present study,we mainly fine mapped and validated its genetic effects.To this end,multiple near-isogenic lines(NILs)were obtained through marker-assisted selection with TAA10 as the recurrent parent.The secondary populations derived from 25 heterozygous recombinants were used for fine mapping of QGl.cau-2D.1,and the allele from XX329 significantly increased GL,thousand-grain weight(TGW),total spikelet number per spike(TSN)and spike compactness(SC).Using NILs for XX329(2D+)and TAA10(2D−),we determined the genetic and pleiotropic effects of QGl.cau-2D.1.The target sequences were aligned with the wheat reference genome RefSeq v2.1 and spanned an~0.9 Mb genomic region.TraesCS2D03G0114900(ortholog of Os03g0594700)was predicted as the candidate gene based on whole-genome re-sequencing and expression analyses.In summary,the map-based cloning of QGl.cau-2D.1 will be useful for improving grain weight with enhanced GL and TSN.展开更多
In near-infrared spectroscopy,the traditional feature band extraction method has certain limitations.Therefore,a band extraction method named the three-step extraction method was proposed.This method combines characte...In near-infrared spectroscopy,the traditional feature band extraction method has certain limitations.Therefore,a band extraction method named the three-step extraction method was proposed.This method combines characteristic absorption bands and correlation coefficients to select characteristic bands corresponding to various spectral forms and then uses stepwise regression to eliminate meaningless variables.Partial least squares regression(PLSR)and extreme learning machine(ELM)models were used to verify the effect of the band extraction method.Results show that the differential transformation of the spectrum can effectively improve the correlation between the spectrum and nickel(Ni)content.Most correlation coefficients were above 0.7 and approximately 20%higher than those of other transformation methods.The model effect established by the feature variable selection method based on comprehensive spectral transformation is only slightly affected by the spectral transformation form.Infive types of spectral transformation,the RPD values of the proposed method were all within the same level.The RPD values of the PLSR model were concentrated between 1.6 and 1.8,and those of the ELM model were between 2.5 and2.9,indicating that this method is beneficial for extracting more complete spectral features.The combination of the three-step extraction method and ELM algorithm can effectively retain important bands associated with the Ni content of the soil.The model based on the spectral band selected by the three-step extraction method has better prediction ability than the other models.The ELM model of the first-order differential transformation has the best prediction accuracy(RP^2=0.923,RPD=3.634).The research results provide some technical support for monitoring heavy metal content spectrum in local soils.展开更多
A new multi-scale numerical model is presented using the fractal theory and adopting FEM to simulate the failure of concrete.The relation between the fractal box dimension in large scale and the damage to concrete in ...A new multi-scale numerical model is presented using the fractal theory and adopting FEM to simulate the failure of concrete.The relation between the fractal box dimension in large scale and the damage to concrete in small scale is deduced.And the evolutionary process of elastic modulus and strength in small scale is given.Consequently,the multi-scale numerical model is proposed to describe the constitutive relation of concrete between small scale and large scale.A two-dimensional static analysis of a concrete block is performed by using this model and the calculation result is discussed.The propagation of cracks of the concrete block is also studied.展开更多
The commercialization of electrolytic MnO_(2)-Zn batteries is highly applauded owing to the advantages of cost-effectiveness,high safety,high energy density,and durable working performance.However,due to the low rever...The commercialization of electrolytic MnO_(2)-Zn batteries is highly applauded owing to the advantages of cost-effectiveness,high safety,high energy density,and durable working performance.However,due to the low reversibility of the cathode MnO_(2)/Mn^(2+)chemistry at high areal capacities and the severe Zn anode corrosion,the practical application of MnO_(2)-Zn batteries is hampered by inadequate lifespan.Leveraging the full advantage of an iodine redox mediator,here we design a highly rechargeable electrolytic MnO_(2)-Zn battery with a high areal capacity.The MnO_(2)-Zn battery coupled with an iodine mediator in a mild electrolyte shows a high discharge voltage of 1.85 V and a robust areal capacity of 10 mAh cm^(-2)under a substantial discharge current density of 160 mA cm^(-2).The MnO_(2)/I_(2)-Zn battery with an areal capacity of 10 mAh cm^(-2)exhibits prolonged stability of over 950 cycles under a high-capacity retention of~94%.The scaled-up MnO_(2)/I_(2)-Zn battery reveals a stable cycle life under a cell capacity of~600 mAh.Moreover,our constructed MnO_(2)/I_(2)-Zn battery demonstrates a practical energy density of~37 Wh kg^(-1)and a competitive energy cost of<18 US$kWh^(-1)by taking into account the cathode,anode,and electrolyte.The MnO_(2)/I_(2)-Zn battery,with its remarkable reversibility and reasonable energy density,enlightens a new arena of large-scale energy storage devices.展开更多
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro...In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.展开更多
基金the National Natural Science Foundation of China(Grant Nos.62303348 and 62173242)the Aeronautical Science Foundation of China(Grant No.2024M071048002)the National Science Fund for Distinguished Young Scholars(Grant No.62225308)to provide fund for conducting experiments.
文摘Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.
基金supported by Jiangsu Special Project for Frontier Leading Base Technology(Grant Nos.BK20192004)Fundamental Research Funds for Central Universities(Grant Nos.B240201190)+3 种基金Changzhou Social Development Science and Technology Support Project(Grant Nos.CE20225037)Changzhou Science and Technology Project(Grant Nos.CM20223014)Suzhou Key Industrial Technology Innovation Forward-Looking Application Research Project(Grant Nos.SYG202143)Changzhou Science and Technology Project(Grant Nos.CJ20241061).
文摘Soft actuators are inherently flexible and compliant,traits that enhance their adaptability to diverse environments and tasks.However,their low structural stiffness can lead to unpredictable and uncontrollable complex deformations when substantial force is required,compromising their load-bearing capacity.This work proposes a novel method that uses gecko setae-inspired adhesives as interlayer films to construct a layer jamming structure to adjust the stiffness of soft actuators.The mechanical behavior of a single tilted microcylinder was analyzed using the energy method to determine the adhesion force of the adhesives.The gecko-inspired adhesive was designed under the guidance of the adhesion force model.Testing under various loads and directions revealed that the tilted characteristic of microcylinders can enhance the adhesion force in its grasping direction.The adhesive demonstrated excellent adhesion performance compared to other typical adhesives.A tunable stiffness actuator using gecko setae-inspired adhesives(TSAGA),was developed with these adhesives serving as interlayer films.The stiffness model of TSAGA was derived by analyzing its axial compression force.The results of stiffness test indicate that the adhesives serve as interlayer films can adjust the stiffness in response to applied load.TSAGA was compared with other typical soft actuators in order to evaluate the stiffness performance,and the results indicate that TSAGA exhibits the highest stiffness and the widest tunable stiffness range.This demonstrates the superior performance of the setae-inspired adhesives as interlayer films in terms of stiffness adjustment.
基金Research on the Measurement of Pulmonary Compliance and Its Guided Therapeutic Efficacy Analysis in Patients with ARDS Secondary to Severe Multiple Injuries(Project No.:XSD2023002)。
文摘Objective:To evaluate the predictive value of Modified Early Warning Score(MEWS)for neurological disease prognosis and identify prognostic factors.Methods:This retrospective study analyzed 768 neurological patients with MEWS≥4(June 2022–June 2024).Patients were stratified by outcomes(favorable/unfavorable).Multivariable logistic regression and ROC analysis were performed.Results:108 cases(13.1%)had unfavorable outcomes.Significant prognostic factors included:age,TBI history,onset-to-admission time,PT,MEWS score,and MEWS≥4 frequency(all P<0.05).MEWS showed AUC=0.749(sensitivity 62.0%,specificity 77.4%).Conclusion:MEWS demonstrates moderate predictive value(AUC=0.749)for neurological outcomes.Consciousness assessment limitations(56.5%impaired cases)may affect sensitivity.A specialized model incorporating pupillary reflexes and GCS is recommended for improved early warning.
基金supported by the Research Project of China Academy of Railway Sciences Corporation Limited under Grant 2023YJ252.
文摘Purpose–This paper focuses on studying the reliability allocation for the railway system,aiming to improve the overall reliability of the railway system and ensure safety operation.Design/methodology/approach–In view of the complex structure of the railway system,involving many subsystems,this paper analyzes the close dynamic coupling effect between railway subsystems.Based on this,taking the railway system failure as the top event,a fault tree is constructed in this paper.Then,a reliability allocation method based on the fault tree is employed to allocate the reliability index.Finally,a numerical experiment is implemented to show the performance of the reliability allocation method.Findings–The results showed that each subsystem needs to improve its reliability to meet the specified railway system reliability requirements,and the traction power supply system is the most important subsystem,which is the most efficient in improving the reliability of the railway system.Originality/value–For the first time,starting from a holistic perspective of the system,reliability allocation is carried out based on the importance of each railway subsystem.
基金Analysis of Lung Compliance Measurement and its Guided Therapeutic Effects in Patients with ARDS Secondary to Severe Multiple Trauma(Project No.:XSD-2023-002)。
文摘In recent years,research on nursing interruptions has been conducted at various levels in emergency departments,intensive care units,hemodialysis centers,operating rooms,and sterilization and supply centers.Nursing interruptions are closely related to adverse nursing events,and interruptions in operating room nursing can significantly impact the success of a patient’s surgery.However,there is a lack of in-depth theoretical research on safety risk assessment and response decision-making by operating room nurses when faced with nursing interruptions.This article reviews the concept,current status,and impact of nursing interruptions in the operating room,analyzes the cognitive level,coping strategies,and negative emotions of operating room nurses,and elaborates on management strategies to provide references for research and management of nursing interruptions in the operating room.
文摘At present,transportation construction plays a certain promoting and driving role in the economic and social development of our country.At the same time,because of the accelerated pace of transportation construction,the traffic network structure of each region of China has gradually been optimized and perfected.This not only significantly improves people’s quality of life and living conditions,but also provides many conveniences for the transportation of goods.However,in the current process of highway construction and development in China,there is still a certain degree of danger,which will also significantly increase the probability of road safety problems occurring.Therefore,it is necessary to apply intelligent transportation technology to effectively enhance the safety of road use.As a result,this study provides a detailed analysis of the overview of intelligent transportation technology,the advantages of the application of intelligent transportation technology in traffic safety management,as well as an in-depth discussion of the role and application of intelligent transportation technology in traffic safety management.
基金supported by the Science and Technology Project of Beijing (No. D161100000216001)the National Science Foundation of China (No. 41672227)
文摘Because of its high adsorption capacity, biochar has been used to stabilize metals when remediating contaminated soils; to date, however, it has seldom been used to remediate contaminated sediment. A biochar was used as a stabilization agent to remediate Cu-and Pb-contaminated sediments, collected from three locations in or close to Beijing. The sediments were mixed with a palm sawdust gasified biochar at a range of weight ratios(2.5%, 5%, and 10%) and incubated for 10, 30, or 60 days. The performance of the different treatments and the heavy metal fractions in the sediments were assessed using four extraction methods, including diffusive gradients in thin films, the porewater concentration, a sequential extraction, and the toxicity characteristic leaching procedure. The results showed that biochar could enhance the stability of heavy metals in contaminated sediments. The degree of stability increased as both the dose of biochar and the incubation time increased. The sediment p H and the morphology of the metal crystals adsorbed onto the biochar changed as the contact time increased. Our results showed that adsorption,metal crystallization, and the p H were the main controls on the stabilization of metals in contaminated sediment by biochar.
基金supported by the 2021 Chinese Academy of Engineering(CAE)International Top-level Forum on Engineering Science and Technology,“Safety and Governance of the High-Speed Railway”。
文摘Safety is essential when building a strong transportation system.As a key development direction in the global railway system,the intelligent railway has safety at its core,making safety a top priority while pursuing the goals of efficiency,convenience,economy,and environmental friendliness.This paper describes the state of the art and proposes a system architecture for intelligent railway systems.It also focuses on the development of railway safety technology at home and abroad,and proposes the active safety method and technology system based on advanced theoretical methods such as the in-depth integration of cyber–physical systems(CPS),data-driven models,and intelligent computing.Finally,several typical applications are demonstrated to verify the advancement and feasibility of active safety technology in intelligent railway systems.
文摘Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,we propose a new method for generating entanglement which is highly useful for multiparty quantum communications such as teleportation and Remote State Preparation(RSP).As one of its applications,we propose a new type of quantum secure communications,i.e.cyclic RSP protocols.Starting from a four-party controlled cyclic RSP protocol of one-qubit states,we show that this cyclic protocol can be generalized to a multiparty controlled cyclic RSP protocol for preparation of arbitrary qubit states.We point out that previous bidirectional and asymmetric protocols can be regarded as a simpler form of our cyclic RSP protocols.
基金supported by the Science and Technology Project of Beijing (No. D161100000216001)the Fundamental Research Funds for the Central University (No. 2014KJJCB23)the Youth Scholars Program of Beijing Normal University (No. 2014NT32)
文摘Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant-and animal-based biomass under oxygen-limited conditions.Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications.Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects.But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment.
基金the National Institutes of Health(1R01AG054839-01A1,1R41CA254500-01A1,and 1R21CA252360-01)for financial support of the research。
文摘Early-stage brain metastasis of breast cancer(BMBC), due to the existence of an intact blood–brain barrier(BBB), is one of the deadliest neurologic complications. To improve the efficacy of chemotherapy for BMBC, a Trojan horse strategy-based nanocarrier has been developed by integrating the cell membrane of a brain-homing cancer cell and a polymeric drug depot. With the camouflage of a MDA-MB-231/Br cell membrane, doxorubicin-loaded poly(D, L-lactic-co-glycolic acid) nanoparticle(DOX-PLGA@CM) shows enhanced cellular uptake and boosted killing potency for MDA-MB-231/Br cells. Furthermore, DOX-PLGA@CM is equipped with naturally selected molecules for BBB penetration, as evidenced by its boosted capacity in entering the brain of both healthy and early-stage BMBC mouse models. Consequently, DOX-PLGA@CM effectively reaches the metastatic tumor lesions in the brain, slows down cancer progression, reduces tumor burden, and extends the survival time for the BMBC animal.Furthermore, the simplicity and easy scale-up of the design opens a new window for the treatment of BMBC and other brain metastatic cancers.
基金supported by the National Natural Science Foundation of China(31661143009 and 31571632)the CAAS Innovative Team Awardthe Bill&Melinda Gates Foundation(OPP51587)。
文摘Bacterial blight(BB), which is caused by Xanthomonas oryzae pv. oryzae(Xoo), is an important rice disease responsible for significant yield losses. In the rice-growing regions of South China where BB outbreaks are common, the resistance of cultivars with BB resistance genes Xa4 and Xa21 has been lost because of rapid changes in the Xoo population structure and virulence. In this study, 421 diverse rice accessions were evaluated regarding their resistance to two Xoo strains, namely GD1358(C5) and IV, which are prevalent pathotypes in South China and overcame the resistance of Xa4 and Xa21, respectively. Using the 4.8 mio filtered SNP dataset, we conducted a genome-wide association study, which identified 13 loci associated with BB resistance, including eight new quantitative trait loci(QTL) and five QTL harboring known BB resistance genes: Xa3/Xa26, xa5, Xa35(t), Xa36(t), Xa40, Xa43(t), and xa44(t). Intriguingly, a steep peak was detected on chromosomes 5 and 11. Six QTL including three new ones, were distributed on chromosome 11, whereas a new QTL q BB5.1 and a known QTL were detected on chromosome 5. Haplotype analyses indicated that the LOC;s05 g01610(Os PRAF2) gene within the q BB5.1 region, which encodes a PRAF protein, is associated with BB resistance. Furthermore, Os PRAF2 knockout lines generated using the CRISPR-Cpf1 system were significantly more resistant to Xoo strains than the wild-type plants. Our results provide researchers and breeders with useful information regarding QTL and gene resources,which may be relevant for developing new BB-resistant rice cultivars.
基金supported by the National Key Research and Development Program of China(32172069).
文摘Grain size is one of the determinants of grain yield,and identifying the genetic loci that control grain size will be helpful for increasing grain yield.In our previous study,a quantitative trait locus(QTL)for grain length(GL),QGl.cau-2D.1,was identified from an F2 population developed from the cross between the natural(TAA10)and synthetic(XX329)allohexaploid wheat.In the present study,we mainly fine mapped and validated its genetic effects.To this end,multiple near-isogenic lines(NILs)were obtained through marker-assisted selection with TAA10 as the recurrent parent.The secondary populations derived from 25 heterozygous recombinants were used for fine mapping of QGl.cau-2D.1,and the allele from XX329 significantly increased GL,thousand-grain weight(TGW),total spikelet number per spike(TSN)and spike compactness(SC).Using NILs for XX329(2D+)and TAA10(2D−),we determined the genetic and pleiotropic effects of QGl.cau-2D.1.The target sequences were aligned with the wheat reference genome RefSeq v2.1 and spanned an~0.9 Mb genomic region.TraesCS2D03G0114900(ortholog of Os03g0594700)was predicted as the candidate gene based on whole-genome re-sequencing and expression analyses.In summary,the map-based cloning of QGl.cau-2D.1 will be useful for improving grain weight with enhanced GL and TSN.
基金supported jointly by the National Key Research Program of China (Nos. 2016YFC0502102, 2016YFC0502300)‘‘Western light’’ talent training plan (Class A)+5 种基金Chinese academy of science and technology services network program (No. KFJ-STS-ZDTP-036)international cooperation agency international partnership program (Nos. 132852KYSB20170029, 2014-3)Guizhou high-level innovative talent training program ‘‘ten’’ level talents program (No. 2016-5648)United fund of karst science research center (No. U1612441)International cooperation research projects of the national natural science fund committee (Nos. 41571130074, 41571130042)Science and Technology Plan of Guizhou Province of China (No. 2017–2966)
文摘In near-infrared spectroscopy,the traditional feature band extraction method has certain limitations.Therefore,a band extraction method named the three-step extraction method was proposed.This method combines characteristic absorption bands and correlation coefficients to select characteristic bands corresponding to various spectral forms and then uses stepwise regression to eliminate meaningless variables.Partial least squares regression(PLSR)and extreme learning machine(ELM)models were used to verify the effect of the band extraction method.Results show that the differential transformation of the spectrum can effectively improve the correlation between the spectrum and nickel(Ni)content.Most correlation coefficients were above 0.7 and approximately 20%higher than those of other transformation methods.The model effect established by the feature variable selection method based on comprehensive spectral transformation is only slightly affected by the spectral transformation form.Infive types of spectral transformation,the RPD values of the proposed method were all within the same level.The RPD values of the PLSR model were concentrated between 1.6 and 1.8,and those of the ELM model were between 2.5 and2.9,indicating that this method is beneficial for extracting more complete spectral features.The combination of the three-step extraction method and ELM algorithm can effectively retain important bands associated with the Ni content of the soil.The model based on the spectral band selected by the three-step extraction method has better prediction ability than the other models.The ELM model of the first-order differential transformation has the best prediction accuracy(RP^2=0.923,RPD=3.634).The research results provide some technical support for monitoring heavy metal content spectrum in local soils.
基金supported by the National Natural Science Foundation of China(Nos.51109029,51178081,51138001 and51009020)the China Postdoctoral Science Foundation(No.20110491535)
文摘A new multi-scale numerical model is presented using the fractal theory and adopting FEM to simulate the failure of concrete.The relation between the fractal box dimension in large scale and the damage to concrete in small scale is deduced.And the evolutionary process of elastic modulus and strength in small scale is given.Consequently,the multi-scale numerical model is proposed to describe the constitutive relation of concrete between small scale and large scale.A two-dimensional static analysis of a concrete block is performed by using this model and the calculation result is discussed.The propagation of cracks of the concrete block is also studied.
基金W.C.acknowledges the startup funds from USTC(Grant#KY2060000150)the Fundamental Research Funds for the Central Universities(WK2060000040).
文摘The commercialization of electrolytic MnO_(2)-Zn batteries is highly applauded owing to the advantages of cost-effectiveness,high safety,high energy density,and durable working performance.However,due to the low reversibility of the cathode MnO_(2)/Mn^(2+)chemistry at high areal capacities and the severe Zn anode corrosion,the practical application of MnO_(2)-Zn batteries is hampered by inadequate lifespan.Leveraging the full advantage of an iodine redox mediator,here we design a highly rechargeable electrolytic MnO_(2)-Zn battery with a high areal capacity.The MnO_(2)-Zn battery coupled with an iodine mediator in a mild electrolyte shows a high discharge voltage of 1.85 V and a robust areal capacity of 10 mAh cm^(-2)under a substantial discharge current density of 160 mA cm^(-2).The MnO_(2)/I_(2)-Zn battery with an areal capacity of 10 mAh cm^(-2)exhibits prolonged stability of over 950 cycles under a high-capacity retention of~94%.The scaled-up MnO_(2)/I_(2)-Zn battery reveals a stable cycle life under a cell capacity of~600 mAh.Moreover,our constructed MnO_(2)/I_(2)-Zn battery demonstrates a practical energy density of~37 Wh kg^(-1)and a competitive energy cost of<18 US$kWh^(-1)by taking into account the cathode,anode,and electrolyte.The MnO_(2)/I_(2)-Zn battery,with its remarkable reversibility and reasonable energy density,enlightens a new arena of large-scale energy storage devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472137 and U2141246)。
文摘In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.