The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of t...The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of time steps increases.In this paper,a new cost function is introduced to develop the value-iteration-based adaptive critic framework to solve the tracking control problem.Unlike the regulator problem,the iterative value function of tracking control problem cannot be regarded as a Lyapunov function.A novel stability analysis method is developed to guarantee that the tracking error converges to zero.The discounted iterative scheme under the new cost function for the special case of linear systems is elaborated.Finally,the tracking performance of the present scheme is demonstrated by numerical results and compared with those of the traditional approaches.展开更多
This article introduces the state-of-the-art development of adaptive dynamic programming and reinforcement learning(ADPRL).First,algorithms in reinforcement learning(RL)are introduced and their roots in dynamic progra...This article introduces the state-of-the-art development of adaptive dynamic programming and reinforcement learning(ADPRL).First,algorithms in reinforcement learning(RL)are introduced and their roots in dynamic programming are illustrated.Adaptive dynamic programming(ADP)is then introduced following a brief discussion of dynamic programming.Researchers in ADP and RL have enjoyed the fast developments of the past decade from algorithms,to convergence and optimality analyses,and to stability results.Several key steps in the recent theoretical developments of ADPRL are mentioned with some future perspectives.In particular,convergence and optimality results of value iteration and policy iteration are reviewed,followed by an introduction to the most recent results on stability analysis of value iteration algorithms.展开更多
基金This work was supported in part by Beijing Natural Science Foundation(JQ19013)the National Key Research and Development Program of China(2021ZD0112302)the National Natural Science Foundation of China(61773373).
文摘The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of time steps increases.In this paper,a new cost function is introduced to develop the value-iteration-based adaptive critic framework to solve the tracking control problem.Unlike the regulator problem,the iterative value function of tracking control problem cannot be regarded as a Lyapunov function.A novel stability analysis method is developed to guarantee that the tracking error converges to zero.The discounted iterative scheme under the new cost function for the special case of linear systems is elaborated.Finally,the tracking performance of the present scheme is demonstrated by numerical results and compared with those of the traditional approaches.
文摘This article introduces the state-of-the-art development of adaptive dynamic programming and reinforcement learning(ADPRL).First,algorithms in reinforcement learning(RL)are introduced and their roots in dynamic programming are illustrated.Adaptive dynamic programming(ADP)is then introduced following a brief discussion of dynamic programming.Researchers in ADP and RL have enjoyed the fast developments of the past decade from algorithms,to convergence and optimality analyses,and to stability results.Several key steps in the recent theoretical developments of ADPRL are mentioned with some future perspectives.In particular,convergence and optimality results of value iteration and policy iteration are reviewed,followed by an introduction to the most recent results on stability analysis of value iteration algorithms.