The creep behavior of bamboo due to the complicated influences of environment and stress will lead to a sustained increase in deformation,which serious effects the service performance of structures.To investigate the ...The creep behavior of bamboo due to the complicated influences of environment and stress will lead to a sustained increase in deformation,which serious effects the service performance of structures.To investigate the creep behavior of recombinant bamboo,twenty-four recombinant bamboo specimens were tested under lasting compressive and tensile loads at different load levels.The typical failure modes of recombinant bamboo under a lasting load at a high load level were buckling failure and brittle fracturing due to creep compressive creep and tensile creep development,respectively.At a high load level,the creep deformation of recombinant bamboo initially develops unsteadily and increases rapidly until failure;at a low load level,creep deformation rapidly develops in the early stage and stabilizes in the middle and late stages.The load level has notable effects on the overall creep deformation and the proportion of creep deformation.The residual deformation of creep will generally increase and the recovery of creep will decrease with increasing load level.Based on the Burgers model,predictive models that can take the load levels into account were proposed to evaluate the compressive and tensile creep behaviors of recombinant bamboo.The proposed models can be used to accurately evaluate the strain-time behavior of recombinant bamboo.展开更多
The destruction of recombinant bamboo depends on many factors,and the complex ambient temperature is an important factor affecting its basic mechanical properties.To investigate the failure mechanism and stress–strai...The destruction of recombinant bamboo depends on many factors,and the complex ambient temperature is an important factor affecting its basic mechanical properties.To investigate the failure mechanism and stress–strain relationship of recombinant bamboo at different temperatures,eighteen tensile specimens of recombinant bamboo were tested.The results showed that with increasing ambient temperature,the typical failure modes of recombinant bamboo were flush fracture,toothed failure,and serrated failure.The ultimate tensile strength,ultimate strain and elastic modulus of recombinant bamboo decreased with increasing temperature,and the ultimate tensile stress decreased from 154.07 to 96.55 MPa,a decrease of 37.33%,and the ultimate strain decreased from 0.011 to 0.008,a decrease of 26.57%.Based on the Ramberg-Osgood model and the pseudo‒elastic design method,a predictive model was established for the tensile stress–strain relationship of recombinant bamboo considering the temperature level.The model can accurately evaluate the tensile stress–strain relationship of recombinant bamboo under different temperature conditions.展开更多
基金supported by the National Natural Science Foundation of China(No.51208262 and No.51778300)the Natural Science Foundation of Jiangsu Province(No.BK20191390)+1 种基金the 333 Project(No.BRA2016421)the Qinglan Project of Jiangsu Province(QL2017).
文摘The creep behavior of bamboo due to the complicated influences of environment and stress will lead to a sustained increase in deformation,which serious effects the service performance of structures.To investigate the creep behavior of recombinant bamboo,twenty-four recombinant bamboo specimens were tested under lasting compressive and tensile loads at different load levels.The typical failure modes of recombinant bamboo under a lasting load at a high load level were buckling failure and brittle fracturing due to creep compressive creep and tensile creep development,respectively.At a high load level,the creep deformation of recombinant bamboo initially develops unsteadily and increases rapidly until failure;at a low load level,creep deformation rapidly develops in the early stage and stabilizes in the middle and late stages.The load level has notable effects on the overall creep deformation and the proportion of creep deformation.The residual deformation of creep will generally increase and the recovery of creep will decrease with increasing load level.Based on the Burgers model,predictive models that can take the load levels into account were proposed to evaluate the compressive and tensile creep behaviors of recombinant bamboo.The proposed models can be used to accurately evaluate the strain-time behavior of recombinant bamboo.
基金The authors wish to express their gratitude to the National Natural Science Foundation of China(Nos.51208262,51778300)Key Research and Development Project of Jiangsu Province(No.BE2020703)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20191390)Six Talent Peaks Project of Jiangsu Province(JZ-017)Qinglan Project of Jiangsu Province for financially supporting this study.
文摘The destruction of recombinant bamboo depends on many factors,and the complex ambient temperature is an important factor affecting its basic mechanical properties.To investigate the failure mechanism and stress–strain relationship of recombinant bamboo at different temperatures,eighteen tensile specimens of recombinant bamboo were tested.The results showed that with increasing ambient temperature,the typical failure modes of recombinant bamboo were flush fracture,toothed failure,and serrated failure.The ultimate tensile strength,ultimate strain and elastic modulus of recombinant bamboo decreased with increasing temperature,and the ultimate tensile stress decreased from 154.07 to 96.55 MPa,a decrease of 37.33%,and the ultimate strain decreased from 0.011 to 0.008,a decrease of 26.57%.Based on the Ramberg-Osgood model and the pseudo‒elastic design method,a predictive model was established for the tensile stress–strain relationship of recombinant bamboo considering the temperature level.The model can accurately evaluate the tensile stress–strain relationship of recombinant bamboo under different temperature conditions.