期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Hybrid Air Quality Prediction Method Based on VAR and Random Forest
1
作者 minghao yi Fuming Lin 《Journal of Computer and Communications》 2025年第2期142-154,共13页
To improve the efficiency of air quality analysis and the accuracy of predictions, this paper proposes a composite method based on Vector Autoregressive (VAR) and Random Forest (RF) models. In the theoretical section,... To improve the efficiency of air quality analysis and the accuracy of predictions, this paper proposes a composite method based on Vector Autoregressive (VAR) and Random Forest (RF) models. In the theoretical section, the model introduction and estimation algorithms are provided. In the empirical analysis section, global air quality data from 2022 to 2024 are used, and the proposed method is applied. Specifically, principal component analysis (PCA) is first conducted, and then VAR and Random Forest methods are used for prediction on the reduced-dimensional data. The results show that the RMSE of the hybrid model is 45.27, significantly lower than the 49.11 of the VAR model alone, verifying its superiority. The stability and predictive performance of the model are effectively enhanced. 展开更多
关键词 Var Model Principal Component Analysis Random Forest Model
在线阅读 下载PDF
Method for designing the optimal sealing depth in methane drainage boreholes to realize efficient drainage 被引量:2
2
作者 minghao yi Liang Wang +2 位作者 Congmeng Hao Qingquan Liu Zhenyang Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1400-1410,共11页
The purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane(CMM),and the sealing depth is a key factor that affects the performance of under... The purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane(CMM),and the sealing depth is a key factor that affects the performance of underground methane drainage.In this work,the layouts of in-seam and crossing boreholes are considered to analyze the stress distribution and failure characteristics of roadway surrounding rock through a numerical simulation and field stress investigation to determine a reasonable sealing depth.The results show that the depths of the plastic and elastic zones in two experimental coal mines are 16 and 20 m respectively.Borehole sealing minimizes the air leakage through the fractures around the roadway when the sealing material covers the failure and plastic zones,and the field test results for CMM drainage at different sealing depths indicate that the CMM drainage efficiency increases with increasing sealing depth but does not change once the sealing depth exceeds the plastic zone.Moreover,sealing in the high-permeability roadway surrounding rock does not have a strong influence on the borehole sealing performance.Considering these findings,a new CMM drainage system for key sealing in the low-permeability zone was developed that is effective for improving the CMM drainage efficiency and prolonging the high-concentration CMM drainage period.The proposed approach offers a valuable quantitative analysis method for selecting the optimum sealing parameters for underground methane drainage,thereby improving considerably the drainage and utilization rates of CMM. 展开更多
关键词 Coal mine methane Methane drainage Borehole sealing Mining safety Methane utilization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部