期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
TaWRKY55-TaPLATZ2 module negatively regulate saline-alkali stress tolerance in wheat
1
作者 Lin Wei Xinman Ren +4 位作者 Lumin Qin Rong Zhang minghan cui Guangmin Xia Shuwei Liu 《Journal of Integrative Plant Biology》 2025年第1期19-34,共16页
Saline-alkaline soils are a major environmental problem that limit plant growth and crop productivity.Plasma membrane H^(+)-ATPases and the salt overly sensitive(SOS)signaling pathway play important roles in plant res... Saline-alkaline soils are a major environmental problem that limit plant growth and crop productivity.Plasma membrane H^(+)-ATPases and the salt overly sensitive(SOS)signaling pathway play important roles in plant responses to saline-alkali stress.However,little is known about the functional genes and mechanisms regulating the transcription of H^(+)-ATPases and SOS pathway genes under saline–alkali stress.In the present study,we identified that the plant AT-rich sequence and zinc-binding(TaPLATZ2)transcription factor are involved in wheat response to saline-alkali stress by directly suppressing the expression of TaHA2/TaSOS3.The knockdown of TaPLATZ2 enhances salt and alkali stress tolerance,while overexpression of TaPLATZ2 leads to salt and alkali stress sensitivity in wheat.In addition,TaWRKY55 directly upregulated the expression of TaPLATZ2 during saline-alkali stress.Through knockdown and overexpression of Ta WRKY55 in wheat,Ta WRKY55 was shown to negatively modulate salt and alkali stress tolerance.Genetic analyses confirmed that Ta PLATZ2 functions downstream of Ta WRKY55 in response to salt and alkaline stresses.These findings provide a TaWRKY55–TaPLATZ2–TaHA2/TaSOS3 regulatory module that regulates wheat responses to saline-alkali stress. 展开更多
关键词 alkali stress PLATZ transcription factor salt stress Triticum aestivum
原文传递
Maize ZmSRO1e promotes mesocotyl elongation and deep sowing tolerance by inhibiting the activity of ZmbZIP61 被引量:1
2
作者 Lumin Qin Fangfang Kong +6 位作者 Lin Wei minghan cui Jianhang Li Chen Zhu Yue Liu Guangmin Xia Shuwei Liu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第8期1571-1586,共16页
Deep sowing is a traditional method for drought resistance in maize production,and mesocotyl elongation is strongly associated with the ability of maize to germinate from deep soil.However,little is known about the fu... Deep sowing is a traditional method for drought resistance in maize production,and mesocotyl elongation is strongly associated with the ability of maize to germinate from deep soil.However,little is known about the functional genes and mechanisms regulating maize mesocotyl elongation.In the present study,we identified a plant-specific SIMILAR TO RCD-ONE(SRO) protein family member,ZmSRO1e,involved in maize mesocotyl elongation.The expression of ZmSRO1e is strongly inhibited upon transfer from dark to white light.The loss-of-function zmsro1e mutant exhibited a dramatically shorter mesocotyl than the wild-type in both constant light and darkness,while overexpression of ZmSRO1e significantly promoted mesocotyl elongation,indicating that ZmSRO1e positively regulates mesocotyl elongation.We showed that ZmSRO1e physically interacted with Zmb ZIP61,an ortholog of Arabidopsis ELONGATED HYPOCOTYL 5(HY5) and showed a function similar to that of HY5 in regulating photomorphogenesis.We found that ZmSRO1e repressed the transcriptional activity of Zmb ZIP61 toward target genes involved in the regulation of cell expansion,such as ZmEXPB4 and ZmEXPB6,by interfering with the binding of ZmbZIP61 to the promoters of target genes.Our results provide a new understanding of the mechanism by which SRO regulates photomorphogenesis and highlight its potential application in deep sowing-resistant breeding. 展开更多
关键词 DEEP SOWING HY5 MAIZE MESOCOTYL SRO
原文传递
Ca^(2+)-dependent TaCCD1 cooperates with TaSAUR215 to enhance plasma membrane H^(+)-ATPase activity and alkali stress tolerance by inhibiting PP2C-mediated dephosphorylation of TaHA2 in wheat 被引量:6
3
作者 minghan cui Yanping Li +6 位作者 Jianhang Li Fengxiang Yin Xiangyu Chen Lumin Qin Lin Wei Guangmin Xia Shuwei Liu 《Molecular Plant》 SCIE CSCD 2023年第3期571-587,共17页
Alkali stress is a major constraint for crop production in many regions of saline-alkali land.However,little is known about the mechanisms through which wheat responds to alkali stress.In this study,we identified a ca... Alkali stress is a major constraint for crop production in many regions of saline-alkali land.However,little is known about the mechanisms through which wheat responds to alkali stress.In this study,we identified a calcium ion-binding protein from wheat,TaCCD1,which is critical for regulating the plasma membrane(PM)H^(+)-ATPase-mediated alkali stress response.PM H+-ATPase activity is closely related to alkali tolerance in the wheat variety Shanrong 4(SR4).We found that two D-clade type 2C protein phosphatases,TaPP2C.D1 and TaPP2C.D8(TaPP2C.D1/8),negatively modulate alkali stress tolerance by dephosphorylating the penultimate threonine residue(Thr926)of TaHA2 and thereby inhibiting PM H+-ATPase activity.Alkali stress induces the expression of TaCCD1 in SR4,and TaCCD1 interacts with TaSAUR215,an early auxin-responsive protein.These responses are both dependent on calcium signaling triggered by alkali stress.TaCCD1 enhances the inhibitory effect of TaSAUR215 on TaPP2C.D1/8 activity,thereby promoting the activity of the PM H^(+)-ATPase TaHA2 and alkali stress tolerance in wheat.Functional and genetic analyses verified the effects of these genes in response to alkali stress,indicating that TaPP2C.D1/8 function downstream of TaSAUR215 and TaCCD1.Collectively,this study uncovers a new signaling pathway that regulates wheat responses to alkali stress,in which Ca^(2+)-dependent TaCCD1 cooperates with TaSAUR215 to enhance PM H+-ATPase activity and alkali stress tolerance by inhibiting TaPP2C.D1/8-mediated dephosphorylation of PM H+-ATPase TaHA2 in wheat. 展开更多
关键词 Triticum aestivum alkali stress resistance calcium-binding protein small auxin-up RNA plasma membrane H+-ATPase DEPHOSPHORYLATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部