New cobalt-free composites consisting of Ba0.5Sr0.5Fe0.9Ni0.1O3-δ (BSFN) and Ce0.8Sm0.2O2-δ (SDC) were investigated as possible cathode materials for intermediate-temperature solid oxide fuel cell (IT-SOFC). B...New cobalt-free composites consisting of Ba0.5Sr0.5Fe0.9Ni0.1O3-δ (BSFN) and Ce0.8Sm0.2O2-δ (SDC) were investigated as possible cathode materials for intermediate-temperature solid oxide fuel cell (IT-SOFC). BSFN, which was synthesized by auto ignition process, was chemically compatible with SDC up to 1100 ℃ as indicated by X-ray diffraction analysis. The electrical conductivity of BSFN reached the maximum value of 57 S.cm-1 at 450 ℃. The thermal expansion coefficient (TEC) value of BSFN was 30.9×10-6 K-1, much higher than that of typical electrolytes. The electrochemical behavior of the composites was analyzed via electrochemical impedance spectroscopy with symmetrical cells BSFN-SDC/SDC/BSFN-SDC. The area specific interracial polarization resistance (ASR) decreased with increasing SDC content of the composite. The area specific interracial polarization resistance (ASR) at 700 ℃ is only 0.49, 0.34 and 0.31 Ω.cm2 when 30, 40, and 50 wt% SDC was cooperated to BSFN, respectively. These results suggest that BSFN-SDC is a possible candidate for IT-SOFC cathode.展开更多
We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinyl...We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2.展开更多
Single atom catalysts(SACs)have attracted considerable attention due to their unique structures and excellent catalytic performance,especially in the area of catalysis science and energy conversion and storage.In rece...Single atom catalysts(SACs)have attracted considerable attention due to their unique structures and excellent catalytic performance,especially in the area of catalysis science and energy conversion and storage.In recent years,SACs have emerged as a new type of sensing material for constructing electrochemical sensors(ECSs),presenting excellent sensitivity,selectivity,and stability.Herein,we review the recent advances of SACs in electrochemical sensing and discuss the status quo of current SAC-based ECSs.Specifically,the fundamentals of SAC-based ECSs are outlined,including the involved central metal atoms and various supports of SACs in this field,the detection mechanisms,and improving strategies of SAC-based ECSs.Moreover,the important applications of SAC-based ECSs are listed and classified,covering the detection of reactive oxygen and nitrogen species,environmental pollutants,disease biomarkers,and pharmaceuticals.Last,based on abundant reported cases,the current conundrums of SAC-based ECSs are summarized,and the prediction of their future developing trends is also put forward.展开更多
Circulating microRNAs(miRNAs)play a pivotal role in the occurrence and development of acute myocardial infarction(AMI),and precise detection of them holds significant clinical implications.The development of luminol-b...Circulating microRNAs(miRNAs)play a pivotal role in the occurrence and development of acute myocardial infarction(AMI),and precise detection of them holds significant clinical implications.The development of luminol-based luminophores in the field of electrochemiluminescence(ECL)for miRNA detection has been significant,while their effectiveness is hindered by the instability of co-reactant hydrogen peroxide(H_(2)O_(2)).In this work,an iron single-atom catalyst(Fe-PNC)was employed for catalyzing the luminol-O_(2) ECL system to achieve ultra-sensitive detection of myocardial miRNA.Target miRNA triggers a hybridization chain reaction(HCR),resulting in the generation of a DNA product featuring multiple sticky ends that facilitate the attachment of Fe-PNC probes to the electrode surface.The Fe-PNC catalyst exhibits high promise and efficiency for the oxygen reduction reaction(ORR)in electrochemical energy conversion systems.The resulting ECL biosensor allowed ultrasensitive detection of myocardial miRNA with a low detection limit of 0.42 fM and a wide linear range from 1 fM to 1.0 nM.Additionally,it demonstrates exceptional performance when evaluated using serum samples collected from patients with AMI.This work expands the application of single-atom catalysis in ECL sensing and introduces novel perspectives for utilizing ECL in disease diagnosis.展开更多
Dual-active sites(DASs)catalysts have positive potential applications in broad fields because of their specific active sites and synergistic catalytic effects.Therefore,the controllable synthesis and finely regulating...Dual-active sites(DASs)catalysts have positive potential applications in broad fields because of their specific active sites and synergistic catalytic effects.Therefore,the controllable synthesis and finely regulating the activity of such catalysts has become a hot research area for now.In this work,we developed a pyrolysis-etching-hydrogen activation strategy to prepare the DASs catalysts involving single-atom Cu and B on N-doped porous carbon material(Cu_(1)-B/NPC).Numerous systematic characterization and density functional theoretical(DFT)calculation results showed that the Cu and B existed as Cu-N4 porphyrinlike unit and B-N_(3)unit in the obtained catalyst.DFT calculations further revealed that single-atom Cu and B sites were linked by bridging N atoms to form the Cu_(1)-B-N6 dual-sites.The Cu_(1)-B/NPC catalyst was more effective than the single-active site catalysts with B-N_(3)sites in NPC(B/NPC)and Cu-N4 porphyrin-like sites in NPC(Cu_(1)/NPC),respectively,for the dehydrogenative coupling of dimethylphenylsilane(DiMPSH)with various alcohols,performing the great activity(>99%)and selectivity(>99%).The catalytic performances of the Cu_(1)-B/NPC catalyst remained nearly unchanged after five cycles,also indicating its outstanding recyclability.DFT calculations showed that the Cu_(1)-B-N6 dual-sites exhibited the lowest energy profile on the potential energy surface than that of sole B-N_(3)and Cu-N4 porphyrin-like sites.Furthermore,the rate-limiting step of dehydrogenation of DiMPSH on Cu_(1)-B-N6 dual-sites also showed a much lower activation energy than the other two single sites.Benefitting from the superiority of the Cu_(1)-B-N6 dual-sites,the Cu_(1)-B/NPC catalyst can also be used for CO_(2)electroreduction to produce syngas.Thus,DASs catalysts are promising to achieve multifunctional catalytic properties and have aroused positive attention in the field of catalysis.展开更多
文摘New cobalt-free composites consisting of Ba0.5Sr0.5Fe0.9Ni0.1O3-δ (BSFN) and Ce0.8Sm0.2O2-δ (SDC) were investigated as possible cathode materials for intermediate-temperature solid oxide fuel cell (IT-SOFC). BSFN, which was synthesized by auto ignition process, was chemically compatible with SDC up to 1100 ℃ as indicated by X-ray diffraction analysis. The electrical conductivity of BSFN reached the maximum value of 57 S.cm-1 at 450 ℃. The thermal expansion coefficient (TEC) value of BSFN was 30.9×10-6 K-1, much higher than that of typical electrolytes. The electrochemical behavior of the composites was analyzed via electrochemical impedance spectroscopy with symmetrical cells BSFN-SDC/SDC/BSFN-SDC. The area specific interracial polarization resistance (ASR) decreased with increasing SDC content of the composite. The area specific interracial polarization resistance (ASR) at 700 ℃ is only 0.49, 0.34 and 0.31 Ω.cm2 when 30, 40, and 50 wt% SDC was cooperated to BSFN, respectively. These results suggest that BSFN-SDC is a possible candidate for IT-SOFC cathode.
基金supported by the National Natural Science Foundation of China (51272033, 51572037, 51603021)333 Project of Jiangsu Province (BRA2017353)the Priority Academic Program Development of Jiangsu Higher Education Institutions and Anhui Provincial Natural Science Foundation (1608085QF156)
文摘We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2.
基金supported by the National Natural Science Foundation of China(Nos.22375005 and 21771003)the Natural Science Research Project of Anhui Province Education Department(Nos.2022AH050323 and 2023AH051116)+1 种基金the Major industrial innovation plan of Anhui Province(No.AHZDCYCX-LSDT2023-04)the University Synergy Innovation Program of Anhui Province(No.GXXT-2022-006).
文摘Single atom catalysts(SACs)have attracted considerable attention due to their unique structures and excellent catalytic performance,especially in the area of catalysis science and energy conversion and storage.In recent years,SACs have emerged as a new type of sensing material for constructing electrochemical sensors(ECSs),presenting excellent sensitivity,selectivity,and stability.Herein,we review the recent advances of SACs in electrochemical sensing and discuss the status quo of current SAC-based ECSs.Specifically,the fundamentals of SAC-based ECSs are outlined,including the involved central metal atoms and various supports of SACs in this field,the detection mechanisms,and improving strategies of SAC-based ECSs.Moreover,the important applications of SAC-based ECSs are listed and classified,covering the detection of reactive oxygen and nitrogen species,environmental pollutants,disease biomarkers,and pharmaceuticals.Last,based on abundant reported cases,the current conundrums of SAC-based ECSs are summarized,and the prediction of their future developing trends is also put forward.
基金supported by the National Natural Science Foundation of China(No.22004003)the Natural Science Foundation of Anhui Province for Distinguished Young Scholars(No.2008085J11)+2 种基金the Open Project Program of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science(No.M2024-5)MOE,the Open Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education(No.BWPU2023KF06)the Natural Science Research Project of Anhui Province Education Department(No.2023AH051116).
文摘Circulating microRNAs(miRNAs)play a pivotal role in the occurrence and development of acute myocardial infarction(AMI),and precise detection of them holds significant clinical implications.The development of luminol-based luminophores in the field of electrochemiluminescence(ECL)for miRNA detection has been significant,while their effectiveness is hindered by the instability of co-reactant hydrogen peroxide(H_(2)O_(2)).In this work,an iron single-atom catalyst(Fe-PNC)was employed for catalyzing the luminol-O_(2) ECL system to achieve ultra-sensitive detection of myocardial miRNA.Target miRNA triggers a hybridization chain reaction(HCR),resulting in the generation of a DNA product featuring multiple sticky ends that facilitate the attachment of Fe-PNC probes to the electrode surface.The Fe-PNC catalyst exhibits high promise and efficiency for the oxygen reduction reaction(ORR)in electrochemical energy conversion systems.The resulting ECL biosensor allowed ultrasensitive detection of myocardial miRNA with a low detection limit of 0.42 fM and a wide linear range from 1 fM to 1.0 nM.Additionally,it demonstrates exceptional performance when evaluated using serum samples collected from patients with AMI.This work expands the application of single-atom catalysis in ECL sensing and introduces novel perspectives for utilizing ECL in disease diagnosis.
基金supported by the National Natural Science Foundation of China(Nos.51902003,22002085,21771003,21501004)the University Synergy Innovation Program of Anhui Province(No.GXXT-2021-020)+4 种基金the Anhui Province Natural Science Foundation(Nos.2108085QB71 and 2008085QB53)the Natural Science Research Project of Anhui Province Education Department(No.KJ2019A0581)the Open Project of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling of Ministry of Education(No.JKF21-03)the Open Foundation of Anhui Laboratory of Clean Catalytic Engineering(No.LCCE-01)the Open Research Funds of Jiangxi Province Engineering Research Center of Ecological Chemical Industry(STKF2109).
文摘Dual-active sites(DASs)catalysts have positive potential applications in broad fields because of their specific active sites and synergistic catalytic effects.Therefore,the controllable synthesis and finely regulating the activity of such catalysts has become a hot research area for now.In this work,we developed a pyrolysis-etching-hydrogen activation strategy to prepare the DASs catalysts involving single-atom Cu and B on N-doped porous carbon material(Cu_(1)-B/NPC).Numerous systematic characterization and density functional theoretical(DFT)calculation results showed that the Cu and B existed as Cu-N4 porphyrinlike unit and B-N_(3)unit in the obtained catalyst.DFT calculations further revealed that single-atom Cu and B sites were linked by bridging N atoms to form the Cu_(1)-B-N6 dual-sites.The Cu_(1)-B/NPC catalyst was more effective than the single-active site catalysts with B-N_(3)sites in NPC(B/NPC)and Cu-N4 porphyrin-like sites in NPC(Cu_(1)/NPC),respectively,for the dehydrogenative coupling of dimethylphenylsilane(DiMPSH)with various alcohols,performing the great activity(>99%)and selectivity(>99%).The catalytic performances of the Cu_(1)-B/NPC catalyst remained nearly unchanged after five cycles,also indicating its outstanding recyclability.DFT calculations showed that the Cu_(1)-B-N6 dual-sites exhibited the lowest energy profile on the potential energy surface than that of sole B-N_(3)and Cu-N4 porphyrin-like sites.Furthermore,the rate-limiting step of dehydrogenation of DiMPSH on Cu_(1)-B-N6 dual-sites also showed a much lower activation energy than the other two single sites.Benefitting from the superiority of the Cu_(1)-B-N6 dual-sites,the Cu_(1)-B/NPC catalyst can also be used for CO_(2)electroreduction to produce syngas.Thus,DASs catalysts are promising to achieve multifunctional catalytic properties and have aroused positive attention in the field of catalysis.