期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Interstitial-oxygen-inducedγ-phase precipitation and martensitic transformation behavior in Ni-Mn-Sn-Co alloy prepared through binder jetting and sintering 被引量:1
1
作者 Shijiang Zhong mingfang qian +5 位作者 Xinxin Shen Shuhe Gong Liangbo Sun Ping Shen Xuexi Zhang Lin Geng 《Journal of Materials Science & Technology》 2025年第11期272-277,共6页
1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7]... 1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention. 展开更多
关键词 phase precipitation martensitic transformation SINTERING Ni Mn Sn Co alloy shape memory effect superelastic ity magnetocaloric effect elastocaloric effect interstitial oxygen binder jetting multicaloric effect
原文传递
Microstructure evolution during superelastic cycles and related elastocaloric effect in N-doped Ti-based shape memory alloys
2
作者 Xuejie Zhu Xuexi Zhang +1 位作者 mingfang qian Lin Geng 《Journal of Materials Science & Technology》 2025年第31期1-14,共14页
The superelasticity and elastocaloric effect(eCE)in N-free Ti-Nb-Zr-Ta alloy and 0.6N(at.%)-doped Ti-Nb-Zr-Ta alloy were comparatively studied.It was found that nitrogen doping played roles in elevating β→α transit... The superelasticity and elastocaloric effect(eCE)in N-free Ti-Nb-Zr-Ta alloy and 0.6N(at.%)-doped Ti-Nb-Zr-Ta alloy were comparatively studied.It was found that nitrogen doping played roles in elevating β→α transition temperature,refining grain sizes,homogenizing microstructure and altering dominant texture index.The N-free Ti-Nb-Zr-Ta alloy exhibited a temperature change of +6.7/−6.5 K during load-ing/unloading processes in the first superelastic cycle,but gradually decreased to+5.7/−5.2 K in 200th cycle owing to the accumulation of newly codirectional dislocation lines and the following single-system dislocation slip during cyclic tests.By contrast,the N-doped alloy showed a lower initial temperature change of+3.7/−3.1 K but increased to+4.6/−4.1 K in 200th cycle due to the extra caloric effect generated from nanoscale O′phase to α″phase which experienced reorientation to favorable variants in early cycles.Residual α″phase laths derived from stress-induced martensitic transformation(SIMT)appeared in both alloys after tensile cycles.The phase interface between β and α″phase was determined to behave a terraced shape,a type of interface compromising the reversible martensitic transformation(MT)and stabilization of martensite phase.The amount of nanodomains(O′phase)in regions situated at a distance from martensite significantly increased after cycles in both alloys,which accounted for the quickly reached stable superelastic deformation and much narrower hysteresis after the first cycle.Therefore,in light of the reproducibility and reversibility of elastocaloric performance in practical application,N-doped β-Ti shape memory alloys(SMAs)are promising candidate materials. 展开更多
关键词 Ti-based shape memory alloys Elastocaloric effect(eCE) Nitrogen doping SUPERELASTICITY Codirectional dislocations Nanodomain Phase interface
原文传递
Ultra-high strength GNP/2024Al composite via thermomechanical treatment 被引量:2
3
作者 Zhong Zheng Xuexi Zhang +3 位作者 mingfang qian Jianchao Li Muhammad Imran Lin Geng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第13期164-172,共9页
The 5.0 vol.%GNP/2024Al composites were prepared by accumulated shear deformation combined with heat treatment,i.e.the thermomechanical treatment(TMT).The results showed that homogeneous distributed GNPs that aligned ... The 5.0 vol.%GNP/2024Al composites were prepared by accumulated shear deformation combined with heat treatment,i.e.the thermomechanical treatment(TMT).The results showed that homogeneous distributed GNPs that aligned along the plastic deformation direction were obtained by six-pass drawing in the solution heat treatment state.The introducing of high-density dislocations in Al matrix by multiple drawing resulted in enhanced nucleation of precipitates and subsequent uniform growth during ageing.Consequently,ultra-strength GNP/2024Al composites,with yield and ultimate tensile strength 482 and571 MPa,respectively,were achieved.The high strength was attributed to homogeneous dispersion of undamaged GNPs,fine and dispersed precipitations and work-hardening effect.This work demonstrated that TMT could act as a feasible strategy for preparing high-performance GNP/Al composites. 展开更多
关键词 Metal-matrix composites(MMCs) Graphene nano-platelets(GNPs) Interface Ultra-strength composites Thermomechanical treatment(TMT)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部