期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Behind the scenes:the roles of light signaling in stomatal movements
1
作者 Kangyou Zhu qianru Guo +12 位作者 Yulin Chen Xin Bu Jiarong Yan Ying Zhang Xiujie Wang Xin Sun Xuefeng Zhang Golam Jalal Ahammed Zhiming Wu Yufeng Liu mingfang qi Tianlai Li Feng Wang 《Horticultural Plant Journal》 2025年第5期1711-1726,共16页
Stomata are tiny pores on the plant leaf surface that regulate the exchange of water and gases between the plant and the external environment.They are crucial for photosynthesis,water use efficiency(WUE),and the plant... Stomata are tiny pores on the plant leaf surface that regulate the exchange of water and gases between the plant and the external environment.They are crucial for photosynthesis,water use efficiency(WUE),and the plant’s ability to adapt to environmental changes.Stomatal movement is vital for understanding how plants adapt to environmental stress and optimize resource utilization.Changes in environmental conditions,especially the quality and intensity of light throughout the day,affect stomatal dynamics and diurnal behavior,which in turn impact photosynthetic efficiency and water-use efficiency.In this review,we summarize the biophysical principles and mechanisms of stomatal movement regulated by ion transport at the plasma membrane,vacuolar membrane and metabolic activity through persulfidation or S-nitrosylation modifications.Specifically,we focus on recent progress in the regulation of stomatal movement by different light qualities,and summarize the photochemical and biochemical events underlying photoreceptors as well as the knowledge of novel regulatory functions and signaling in the multilayer control of stomatal movement and environmental adaptation.Furthermore,as rising global temperatures and increased water needs of farming methods are expected to escalate future crop losses,we explore the potential of smart LED lighting and gene editing technology in enhancing photosynthetic efficiency and water-use efficiency,leading to increased crop biomass and higher crop yields. 展开更多
关键词 STOMATA Light signaling PHOTORECEPTOR PHOTOSYNTHESIS WUE Light quality
在线阅读 下载PDF
SlPGR5/SlPGRL1 pathway-dependent cyclic electron transport regulates photoprotection and chloroplast quality in tomato plants
2
作者 Xiaolong Yang Yumeng Zhang +5 位作者 Ting Liu Jiali Shi mingfang qi Riyuan Chen Yufeng Liu Tianlai Li 《Horticultural Plant Journal》 2025年第1期211-226,共16页
The essential photoprotective role of proton gradient regulation 5(PGR5)-dependent cyclic electron flow(CEF)has been reported in Arabidopsis,rice,and algae.However,its functional assessment has not been performed in t... The essential photoprotective role of proton gradient regulation 5(PGR5)-dependent cyclic electron flow(CEF)has been reported in Arabidopsis,rice,and algae.However,its functional assessment has not been performed in tomato yet.In this study,we focused on elucidate the function of SlPGR5 and SlPGR5-like photosynthetic phenotype 1(PGRL1)in tomato.We performed RNA interference and found that SlPGR5/SlPGRL1-suppressed transformants exhibited extremely low CO_(2)assimilation capacity,their photosystem I(PSI)and PSII were severely photoinhibited and chloroplasts were obviously damaged.The SlPGR5/SlPGRL1-suppressed plants almost completely inhibited CEF and Y(ND),and PSII photoinhibition may be directly related to the inability to produce sufficient proton motive force to induce NPQ.The transgenic plants overexpressing SlPGR5 and SlPGRL1 driven by 35S promoter capable alleviate photoinhibition of plants under low night temperature.The transcriptomic and proteomic analyses suggested that the nuclear gene transcription and turnover of chloroplast proteins,including the plastoglobule-related proteins,were closely related to SlPGR5/SlPGRL1 pathway dependent CEF.The bridge relationship between CEF and chloroplast quality maintenance was a novel report to our knowledge.In conclusion,these results revealed the regulatory mechanism of the SlPGR5/SlPGRL1 pathway in photoprotection and maintenance of chloroplast function in tomato,which is crucial for reduce yield loss,especially under adverse environmental conditions. 展开更多
关键词 TOMATO Cyclic electron transport SlPGR5/SlPGRL1 PHOTOPROTECTION Chloroplast quality Plastoglobulus
在线阅读 下载PDF
Abscisic acid alleviates photosynthetic damage in the tomato ABA-deficient mutant sitiens and protects photosystemⅡfrom damage via the WRKY22-PsbA complex under low-temperature stress
3
作者 Jiamao Gu Pengkun Liu +8 位作者 Wenting Nie Zhijun Wang Xiaoyu Cui Hongdan Fu Feng Wang mingfang qi Zhouping Sun Tianlai Li Yufeng Liu 《Journal of Integrative Agriculture》 2025年第2期546-563,共18页
Abscisic acid(ABA)plays a key role in promoting the growth and development of plants,as well as mediating the responses of plants to adverse environmental conditions.Here,we measured the photosynthetic capacity of wil... Abscisic acid(ABA)plays a key role in promoting the growth and development of plants,as well as mediating the responses of plants to adverse environmental conditions.Here,we measured the photosynthetic capacity of wild-type RR,mutant sitiens(sit),and ABA-pretreated sit tomato seedlings following exposure to low-temperature(LT)stress.We found that the net photosynthetic rate,intercellular carbon dioxide concentration,transpiration rate,and stomatal conductance of sit seedlings were lower than those of RR seedlings under LT stress.The chloroplast width,area,and number of osmiophilic granules were significantly larger in sit seedlings than in RR seedlings,while the chloroplast length/width ratio was significantly lower in sit seedlings than in RR seedlings.The photochemical activity of sit seedlings was lower,and the expression of photosynthesis-related genes in sit seedlings was altered following exposure to LT stress.ABA pretreatment significantly alleviated the above phenomenon.We also conducted an RNA sequencing analysis and characterized the expression patterns of genes in tomato seedlings following exposure to LT stress.We constructed 15 cDNA libraries and identified several differentially expressed genes involved in photosynthesis,plant hormone signaling transduction,and primary and secondary metabolism.Additional analyses of genes encoding transcription factors and proteins involved in photosynthesis-related processes showed pronounced changes in expression under LT stress.Luciferase reporter assay and electrophoretic mobility shift assay revealed that WRKY22 regulates the expression of PsbA.The PSII of WRKY22 and PsbA-silenced plants was inhibited.Our findings indicate that ABA plays a role in regulating the process of photosynthesis and protecting PSII in tomato under LT stress through the WRKY22-PsbA complex. 展开更多
关键词 ABA low-temperature stress photosynthesis RNA-seq SlWRKY22 SlPsbA
在线阅读 下载PDF
Light quality regulates plant biomass and fruit quality through a photoreceptor-dependent HY5-LHC/CYCB module in tomato
4
作者 Jiarong Yan Juan Liu +17 位作者 Shengdie Yang Chenghao Jiang Yanan Liu Nan Zhang Xin Sun Ying Zhang Kangyou Zhu Yinxia Peng Xin Bu Xiujie Wang Golam Jalal Ahammed Sida Meng Changhua Tan Yufeng Liu Zhouping Sun mingfang qi Feng Wang Tianlai Li 《Horticulture Research》 SCIE CSCD 2023年第12期93-107,共15页
Increasing photosynthesis and light capture offers possibilities for improving crop yield and provides a sustainable way to meet the increasing global demand for food.However,the poor light transmittance of transparen... Increasing photosynthesis and light capture offers possibilities for improving crop yield and provides a sustainable way to meet the increasing global demand for food.However,the poor light transmittance of transparent plastic films and shade avoidance at high planting density seriously reduce photosynthesis and alter fruit quality in vegetable crops,and therefore it is important to investigate the mechanisms of light signaling regulation of photosynthesis and metabolism in tomato(Solanum lycopersicum).Here,a combination of red,blue,and white(R1W1B0.5)light promoted the accumulation of chlorophyll,carotenoid,and anthocyanin,and enhanced photosynthesis and electron transport rates by increasing the density of active reaction centers and the expression of the genes LIGHT-HARVESTING COMPLEX B(SlLHCB)and A(SlLHCA),resulting in increased plant biomass.In addition,R1W1B0.5 light induced carotenoid accumulation and fruit ripening by decreasing the expression of LYCOPENEβ-CYCLASE(SlCYCB).Disruption of SlCYCB largely induced fruit lycopene accumulation,and reduced chlorophyll content and photosynthesis in leaves under red,blue,and white light.Molecular studies showed that ELONGATED HYPOCOTYL 5(SlHY5)directly activated SlCYCB,SlLHCB,and SlLHCA expression to enhance chlorophyll accumulation and photosynthesis.Furthermore,R1W1B0.5 light-induced chlorophyll accumulation,photosynthesis,and SlHY5 expression were largely decreased in the slphyb1cry1 mutant.Collectively,R1W1B0.5 light noticeably promoted photosynthesis,biomass,and fruit quality through the photoreceptor(SlPHYB1 and SlCRY1)-SlHY5-SlLHCA/B/SlCYCB module in tomato.Thus,the manipulation of light environments in protected agriculture is a crucial tool to regulate the two vital agronomic traits related to crop production efficiency and fruit nutritional quality in tomato. 展开更多
关键词 CROPS metabolism quality
原文传递
SlBEL11 regulates flavonoid biosynthesis,thus fine-tuning auxin efflux to prevent premature fruit drop in tomato
5
作者 Xiufen Dong Xianfeng Liu +12 位作者 Lina Cheng Ruizhen Li Siqi Ge Sai Wang Yue Cai Yang Liu Sida Meng Cai-Zhong Jiang Chun-Lin Shi Tianlai Li Daqi Fu mingfang qi Tao Xu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第4期749-770,共22页
Auxin regulates flower and fruit abscission,but how developmental signals mediate auxin transport in abscission remains unclear.Here,we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11(SlBEL11)in re... Auxin regulates flower and fruit abscission,but how developmental signals mediate auxin transport in abscission remains unclear.Here,we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11(SlBEL11)in regulating auxin transport during abscission in tomato(Solanum lycopersicum).SlBEL11 is highly expressed in the fruit abscission zone,and its expression increases during fruit development.Knockdown of SlBEL11 expression by RNA interference(RNAi)caused premature fruit drop at the breaker(Br)and 3d post-breaker(Br+3)stages of fruit development.Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids,especially quercetin,which functions as an auxin transport inhibitor.This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits,which is crucial for the formation of an auxin response gradient.Indeed,quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants.DNA affinity purification sequencing(DAP-seq)analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter.Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S.lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111(SlMYB111)induces the expression of the core flavonoid biosynthesis genes SlCHS1,SlCHI,SlF3H,and SlFLS by directly binding to their promoters.Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel,thereby preventing premature fruit drop. 展开更多
关键词 ABSCISSION AUXIN flavonoid SlBEL11 TOMATO
原文传递
PROTECTIVE ROLES OF D1 PROTEIN TURNOVER AND THE XANTHOPHYLL CYCLE IN TOMATO(SOLANUM LYCOPERSICUM)UNDER SUB-HIGH TEMPERATURE AND HIGH LIGHT STRESS
6
作者 Tao LUA Jiazhi LU +3 位作者 mingfang qi Zhouping SUN Yufeng LIU Tianlai LI 《Frontiers of Agricultural Science and Engineering》 2021年第2期262-279,共18页
D1 protein turnover and the xanthophyll cycle(XC)are important photo-protective mechanisms in plants that operate under adverse conditions.Here,streptomycin sulfate(SM)and dithiothreitol(DTT)were used in tomato plants... D1 protein turnover and the xanthophyll cycle(XC)are important photo-protective mechanisms in plants that operate under adverse conditions.Here,streptomycin sulfate(SM)and dithiothreitol(DTT)were used in tomato plants as inhibitors of D1 protein turnover and XC to elucidate their photoprotec-tive impacts under sub-high temperature and high light conditions(HH,35°C,1000 limol m 2.S1).SM and DTT treatments significantly reduced the net photosynthetic rate,apparent quantum efficiency,maximum photochemical efficiency,and potential activity of photosystem II,leading to photoinhibition and a decline in plant biomass under HH.The increase in reactive oxygen species levels resulted in thylakoid membrane lipid peroxidation.In addition,there were increased non-photochemical quenching and decreased chlorophyll pigments in SM and DTT application,causing an inhibition of D1 protein production at both transcriptional and translational levels.Overall,inhibition of D1 turnover caused greater photoinhibition than XC inhibition.Additionally,the recovery levels of most photosynthesis indicators in DTT-treated plants were higher than in SM-treated plants.These findings support the view that D1 turnover has a more important role than XC in photoprotection in tomato under HH conditions. 展开更多
关键词 D1 turnover PHOTOINHIBITION PHOTOPROTECTION PHOTOSYNTHESIS TOMATO xanthophyll cycle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部