Charge-transfer(CT)stoichiometric cocrystals are promising choice of organic materials for unveiling the structure-property relationship.However,due to the contradiction between large CT degree required for strong NIR...Charge-transfer(CT)stoichiometric cocrystals are promising choice of organic materials for unveiling the structure-property relationship.However,due to the contradiction between large CT degree required for strong NIR absorption and flexible molecular stacking,construction of stoichiomorphism-based cocystals with near-infrared(NIR)photothermal property remains challenging.Herein,the first example of stoichiomorphism-based photothermal cocrystals were accomplished through the adaptive assembly of 3,3,5,5-tetramethylbenzidine(TMB)donor and 1,2,4,5-tetracyanobenzene(TCNB)acceptor.The selective cocrystallization could be controlled by varying the donor-acceptor stoichiometries via a surfactantassisted method,resulting in two cocrystals with 1:1(T1C1)and 1:2(T2C1)stoichiometries.The absorbance intensity of T1C1 at 808 nm was nearly twice that of T2C1,while the photothermal conversion efficiency(PCE)of the former was 60.3%±0.6%,approximately 80%of that for the latter(75.5%±2.6%),which might be caused by the different intermolecular interactions in distinct molecular stacking patterns.Notably,both excellent PCEs of stoichiometric cocrystals were attributed to the nonradiative transition process,including internal conversion and charge dissociation processes,as elucidated by femtosecond transient absorption spectroscopy measurements.Furthermore,T1C1 was used as an NIR heater for preparing agarose-based photothermal hydrogel,showing great potential for light-controlled in-situ gelation.This strategy of balancing the CT degree and molecular packing orientation not only uncovered the relationship between stoichiometric stacking and photothermal property,but also provided an opportunity to develop advanced organic optoelectronic materials.展开更多
Egg shell waste was used as an activation agent directly for the manufacture of a biomass-derived porous carbon,which possessed a surface area of 626 m2·g-1 and was rich in nitrogen,sulfur and oxygen functionalit...Egg shell waste was used as an activation agent directly for the manufacture of a biomass-derived porous carbon,which possessed a surface area of 626 m2·g-1 and was rich in nitrogen,sulfur and oxygen functionalities.The activation mechanism was proposed,and the carbon showed its potential to act as an adsorbent for the adsorptive removal of various contaminants from both aqueous and non-aqueous solutions,possessing maximum adsorption capacities of 195.9,185.1,125.5 and 44.6 mg·g-1 for sulfamethoxazole,methyl orange,diclofenac sodium and dibenzothiophene,respectively.Through the utilization of egg shell waste as a sustainable activation agent,this work may help to make the widely applied biomass-derived porous carbons more economical and ecological.展开更多
The donor–acceptor(D–A)copolymers,which exhibit wide broad absorption and intensified light-harvesting,are highly captivating for applications in solar conversion and optoelectronics.However,designing a polymer stru...The donor–acceptor(D–A)copolymers,which exhibit wide broad absorption and intensified light-harvesting,are highly captivating for applications in solar conversion and optoelectronics.However,designing a polymer structure that can achieve these photophysical properties simultaneously remains a challenge.Herein,we report two novel cyanated units 4-cyanobenzo[1,2-b:6,5-b′:3,4-c″]trithiophene(CBT)and 4,6-dicyanobenzo[1,2-b:6,5-b′:3,4-c″]trithiophene(C2BT)and their corresponding polymers,PCBT and PC2BT.Very interestingly,the PC2BT exhibited a broad absorption band with full width at half maxima(FWHM)of its absorption spectra,almost twice wider than PCBT and benchmark polymers PM6 and D18.Moreover,the PC2BT demonstrated intensified light-harvesting and long-lived exciton.Our in-depth investigation unveiled that the presence of dicyano substitutions induced a strong intramolecular charge transfer(ICT),which,in turn,resulted in the formation of favorable photophysical properties.Therefore,PC2BT-based polymer solar cells(PSCs)exhibited an efficiency of 18.06%,which was a record-setting efficiency for cyanated polymers.This study suggests an efficient strategy for enhancing ICT to design polymers toward favorable photophysical properties and excellent photovoltaic performance.展开更多
Online diagnosis methods for high-voltage(HV)cable faults have been extensively studied.Power cable fault monitoring is not accurate,and the degree of data fusion analysis of current methods is insufficient.To address...Online diagnosis methods for high-voltage(HV)cable faults have been extensively studied.Power cable fault monitoring is not accurate,and the degree of data fusion analysis of current methods is insufficient.To address these problems,an online monitoring method based on the locus-analysis for HV cable faults is developed.By simultaneously measuring two circulating currents in a coaxial cable,a two-dimensional locus diagram is drawn.The fault criteria and database are established to detect the fault by analyzing the changes of the locus characteristic parameters.A cross-connected grounding simulation model of a high-voltage cable is developed,and several faults at different locations are simulated.Fault identification is established based on the changes in the long axis,short axis,eccentricity,and tilt angle of the track.The simulation and field experiments show that this method can provide an increased amount of fault-monitoring reference information,which can improve the monitoring accuracy and provide a new approach to cable fault monitoring.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22001006,22375002,22273057,22225401)the Anhui Provincial Natural Science Foundation(No.2308085Y10)+4 种基金the Open Project of Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Anhui University,Ministry of EducationThe National Key Research and Development Program of China(Nos.2022YFC_(2)403500,2020YFA0210800)The Universities Joint Laboratory of Guangdong,Hong Kong and Macao(No.130/07422011)the Natural Science Foundation of Guangdong Province(No.2022A1515011661)the China Postdoctoral Science Foundation(Nos.2023M730760,2023M740010)。
文摘Charge-transfer(CT)stoichiometric cocrystals are promising choice of organic materials for unveiling the structure-property relationship.However,due to the contradiction between large CT degree required for strong NIR absorption and flexible molecular stacking,construction of stoichiomorphism-based cocystals with near-infrared(NIR)photothermal property remains challenging.Herein,the first example of stoichiomorphism-based photothermal cocrystals were accomplished through the adaptive assembly of 3,3,5,5-tetramethylbenzidine(TMB)donor and 1,2,4,5-tetracyanobenzene(TCNB)acceptor.The selective cocrystallization could be controlled by varying the donor-acceptor stoichiometries via a surfactantassisted method,resulting in two cocrystals with 1:1(T1C1)and 1:2(T2C1)stoichiometries.The absorbance intensity of T1C1 at 808 nm was nearly twice that of T2C1,while the photothermal conversion efficiency(PCE)of the former was 60.3%±0.6%,approximately 80%of that for the latter(75.5%±2.6%),which might be caused by the different intermolecular interactions in distinct molecular stacking patterns.Notably,both excellent PCEs of stoichiometric cocrystals were attributed to the nonradiative transition process,including internal conversion and charge dissociation processes,as elucidated by femtosecond transient absorption spectroscopy measurements.Furthermore,T1C1 was used as an NIR heater for preparing agarose-based photothermal hydrogel,showing great potential for light-controlled in-situ gelation.This strategy of balancing the CT degree and molecular packing orientation not only uncovered the relationship between stoichiometric stacking and photothermal property,but also provided an opportunity to develop advanced organic optoelectronic materials.
基金Financial support from the National Natural Science Foundation of China(Grant Nos.5197846551908409+2 种基金51638011)the Science and Technology Plans of Tianjin(Grant No.19JCZDJC39800)China Postdoctoral Science Foundation(Grant No.2018M641655)。
文摘Egg shell waste was used as an activation agent directly for the manufacture of a biomass-derived porous carbon,which possessed a surface area of 626 m2·g-1 and was rich in nitrogen,sulfur and oxygen functionalities.The activation mechanism was proposed,and the carbon showed its potential to act as an adsorbent for the adsorptive removal of various contaminants from both aqueous and non-aqueous solutions,possessing maximum adsorption capacities of 195.9,185.1,125.5 and 44.6 mg·g-1 for sulfamethoxazole,methyl orange,diclofenac sodium and dibenzothiophene,respectively.Through the utilization of egg shell waste as a sustainable activation agent,this work may help to make the widely applied biomass-derived porous carbons more economical and ecological.
基金supported by the National Natural Science Foundation of China(grant nos.22179076 and 22225504)the Department of Education of Guangdong Province,China(grant no.2021KCXTD032)+2 种基金the Natural Science Foundation of Guangdong Province,China(grant no.2022A1515011803)the Science and Technology Innovation Fund for College students in Guangdong Province,China(grant no.2020329105600A000003)Guangdong Provincial Key Laboratory of Catalysis,China(grant no.2020B121201002).
文摘The donor–acceptor(D–A)copolymers,which exhibit wide broad absorption and intensified light-harvesting,are highly captivating for applications in solar conversion and optoelectronics.However,designing a polymer structure that can achieve these photophysical properties simultaneously remains a challenge.Herein,we report two novel cyanated units 4-cyanobenzo[1,2-b:6,5-b′:3,4-c″]trithiophene(CBT)and 4,6-dicyanobenzo[1,2-b:6,5-b′:3,4-c″]trithiophene(C2BT)and their corresponding polymers,PCBT and PC2BT.Very interestingly,the PC2BT exhibited a broad absorption band with full width at half maxima(FWHM)of its absorption spectra,almost twice wider than PCBT and benchmark polymers PM6 and D18.Moreover,the PC2BT demonstrated intensified light-harvesting and long-lived exciton.Our in-depth investigation unveiled that the presence of dicyano substitutions induced a strong intramolecular charge transfer(ICT),which,in turn,resulted in the formation of favorable photophysical properties.Therefore,PC2BT-based polymer solar cells(PSCs)exhibited an efficiency of 18.06%,which was a record-setting efficiency for cyanated polymers.This study suggests an efficient strategy for enhancing ICT to design polymers toward favorable photophysical properties and excellent photovoltaic performance.
文摘Online diagnosis methods for high-voltage(HV)cable faults have been extensively studied.Power cable fault monitoring is not accurate,and the degree of data fusion analysis of current methods is insufficient.To address these problems,an online monitoring method based on the locus-analysis for HV cable faults is developed.By simultaneously measuring two circulating currents in a coaxial cable,a two-dimensional locus diagram is drawn.The fault criteria and database are established to detect the fault by analyzing the changes of the locus characteristic parameters.A cross-connected grounding simulation model of a high-voltage cable is developed,and several faults at different locations are simulated.Fault identification is established based on the changes in the long axis,short axis,eccentricity,and tilt angle of the track.The simulation and field experiments show that this method can provide an increased amount of fault-monitoring reference information,which can improve the monitoring accuracy and provide a new approach to cable fault monitoring.