Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were c...Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were constructed by biomimetic extracellular matrix of collagen I/hyaluronic acid complex conjugated with doxorubicin/lapatinib(Dox/Lap)-loaded nanoparticles.The HCNPs sponge exhibited excellent clotting ability and blood absorption rate.Worthily,Dox/Lap-loaded nanoparticles were synchronously endowed with a large number of oligo hyaluronic acid segments after degradation,which thus enhanced the ability of targeting into CD44-overexpressed tumor cells.The implantable HCNPs sponge in resected cavity of postoperative 4T1 models inhibited the spread of scattered tumor cells by absorbing the inevitable bleeding.More importantly,CD44 targeted nanoparticle with suitable Dox/Lap proportion continuously released from sponge to kill tumor cells of surrounding HCNPs and those remaining at surgical margin,thus prevented local recurrence as well as distant metastasis.Therefore,the functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer.展开更多
Supramolecular nanofiber peptide assemblies had been used to construct functional hydrogel biomaterials and achieved great progress.Here,a new class of biphenyl-tripeptides with different C-terminal amino acids sequen...Supramolecular nanofiber peptide assemblies had been used to construct functional hydrogel biomaterials and achieved great progress.Here,a new class of biphenyl-tripeptides with different C-terminal amino acids sequences transposition were developed,which could self-assemble to form robust supramolecular nanofiber hydrogels from 0.7 to 13.8 kPa at ultra-low weight percent(about 0.27 wt%).Using molecular dynamics simulations to interrogate the physicochemical properties of designed biphenyl-tripeptide sequences in atomic detail,reasonable hydrogen bond interactions and“FF”brick(phenylalanine-phenylalanine)promoted the formation of supramolecular fibrous hydrogels.The biomechanical properties and intermolecular interactions were also analyzed by rheology and spectroscopy analysis to optimize amino acid sequence.Enhanced L929 cells adhesion and proliferation demonstrated good biocompatibility of the hydrogels.The storage modulus of BPAA-AFF with 10 nm nanofibers self-assembling was around 13.8 kPa,and the morphology was similar to natural extracellular matrix.These supramolecular nanofiber hydrogels could effectively support chondrocytes spreading and proliferation,and specifically enhance chondrogenic related genes expression and chondrogenic matrix secretion.Such biomimetic supramolecular short peptide biomaterials hold great potential in regenerative medicine as promising innovative matrices because of their simple and regular molecular structure and excellent biological performance.展开更多
The authors regret that the published version of the above article contained error in Fig.6F,which was not identified during the proofing stage.The wrong live/dead stain,F-actin stain,and SEM images of BPAA-GFF gel we...The authors regret that the published version of the above article contained error in Fig.6F,which was not identified during the proofing stage.The wrong live/dead stain,F-actin stain,and SEM images of BPAA-GFF gel were selected during the assembly of Fig.6F.The images of Fig.6F have been replaced with the correct images as follow.The authors apologize for this error and state that the figure’s correction did not change the scientific conclusions of the article in any way.展开更多
基金sponsored by the National Natural Science Foundation of China(Nos.51973136 and 32071352)the Open Project Program of the Third Affiliated Hospital of Xinxiang Medical University(No.KFKTZD202102).
文摘Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were constructed by biomimetic extracellular matrix of collagen I/hyaluronic acid complex conjugated with doxorubicin/lapatinib(Dox/Lap)-loaded nanoparticles.The HCNPs sponge exhibited excellent clotting ability and blood absorption rate.Worthily,Dox/Lap-loaded nanoparticles were synchronously endowed with a large number of oligo hyaluronic acid segments after degradation,which thus enhanced the ability of targeting into CD44-overexpressed tumor cells.The implantable HCNPs sponge in resected cavity of postoperative 4T1 models inhibited the spread of scattered tumor cells by absorbing the inevitable bleeding.More importantly,CD44 targeted nanoparticle with suitable Dox/Lap proportion continuously released from sponge to kill tumor cells of surrounding HCNPs and those remaining at surgical margin,thus prevented local recurrence as well as distant metastasis.Therefore,the functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer.
基金sponsored by National Key R&D Program of China(Grant No.2018YFC1105900)National Natural Science Foundation of China(32071352)+1 种基金Sichuan Province Key R&D Program(2019YFS0007)Sichuan university Innovation Spark Project(2018SCUH0089).
文摘Supramolecular nanofiber peptide assemblies had been used to construct functional hydrogel biomaterials and achieved great progress.Here,a new class of biphenyl-tripeptides with different C-terminal amino acids sequences transposition were developed,which could self-assemble to form robust supramolecular nanofiber hydrogels from 0.7 to 13.8 kPa at ultra-low weight percent(about 0.27 wt%).Using molecular dynamics simulations to interrogate the physicochemical properties of designed biphenyl-tripeptide sequences in atomic detail,reasonable hydrogen bond interactions and“FF”brick(phenylalanine-phenylalanine)promoted the formation of supramolecular fibrous hydrogels.The biomechanical properties and intermolecular interactions were also analyzed by rheology and spectroscopy analysis to optimize amino acid sequence.Enhanced L929 cells adhesion and proliferation demonstrated good biocompatibility of the hydrogels.The storage modulus of BPAA-AFF with 10 nm nanofibers self-assembling was around 13.8 kPa,and the morphology was similar to natural extracellular matrix.These supramolecular nanofiber hydrogels could effectively support chondrocytes spreading and proliferation,and specifically enhance chondrogenic related genes expression and chondrogenic matrix secretion.Such biomimetic supramolecular short peptide biomaterials hold great potential in regenerative medicine as promising innovative matrices because of their simple and regular molecular structure and excellent biological performance.
文摘The authors regret that the published version of the above article contained error in Fig.6F,which was not identified during the proofing stage.The wrong live/dead stain,F-actin stain,and SEM images of BPAA-GFF gel were selected during the assembly of Fig.6F.The images of Fig.6F have been replaced with the correct images as follow.The authors apologize for this error and state that the figure’s correction did not change the scientific conclusions of the article in any way.