For a graph G, a path cover is a set of vertex disjoint paths covering all the vertices of G, and a path cover number of G, denoted by p(G), is the minimum number of paths in a path cover among all the path covers of ...For a graph G, a path cover is a set of vertex disjoint paths covering all the vertices of G, and a path cover number of G, denoted by p(G), is the minimum number of paths in a path cover among all the path covers of G. In this paper, we prove that if G is a K_(1,4)-free graph of order n and σ_(k+1)(G) ≥ n-k, then p(G) ≤ k, where σ_(k+1)(G) = min{∑v∈S d(v) : S is an independent set of G with |S| = k + 1}.展开更多
基金Supported by the Joint Fund of Liaoning Provincial Natural Science Foundation(Grant No.SY2016012)
文摘For a graph G, a path cover is a set of vertex disjoint paths covering all the vertices of G, and a path cover number of G, denoted by p(G), is the minimum number of paths in a path cover among all the path covers of G. In this paper, we prove that if G is a K_(1,4)-free graph of order n and σ_(k+1)(G) ≥ n-k, then p(G) ≤ k, where σ_(k+1)(G) = min{∑v∈S d(v) : S is an independent set of G with |S| = k + 1}.