In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC...In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12204130)the Fundamental Research Funds for the Central University of China(Grant No.2019ZDPY16)+2 种基金the Basic Research Project of Xuzhou City(Grant No.KC22043)the support funded by the Graduate Innovation Program of China University of Mining and Technology(Grant Nos.2024WLJCRCZL266 and 2024WLJCRCZL294)the Postgraduate Research Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_2692)。
文摘In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure.