Optically transparent microwave absorbers and multi-band stealth have extensive potential applications in military defense and wireless communication fields, and thus have attracted considerable attention. So far,most...Optically transparent microwave absorbers and multi-band stealth have extensive potential applications in military defense and wireless communication fields, and thus have attracted considerable attention. So far,most related work is based on inorganic transparent conductive metasurfaces. In this paper, we proposed and experimentally demonstrated a flexible, broadband and optically transparent microwave absorber using an organic metasurface. The metasurface absorber is composed of a sandwich structure, in which electric resonances and magnetic resonances are induced resulting in broadband absorption. A spraying process was developed to prepare this metasurface absorber. Both simulations and experiment show that this metasurface has broadband microwave absorption and good optical transparency. We further found that by using a multi-layer structure, visible, radar,and infrared stealth(multi-band stealth) can be achieved simultaneously. With the advantages of excellent foldability and low cost, the proposed metasurfaces may have applications in military and wireless communication fields.展开更多
Block copolymer(BCP) nanolithography offers potential beyond traditional photolithographic limits, yet reliably producing low-defect, perpendicular domains remains challenging. We introduce a microenvironmentdriven is...Block copolymer(BCP) nanolithography offers potential beyond traditional photolithographic limits, yet reliably producing low-defect, perpendicular domains remains challenging. We introduce a microenvironmentdriven isothermal annealing method for directed self-assembly of BCP thin films. By annealing films at stable temperature in a quasi-sealed, inert-gas chamber, our approach promotes highly uniform perpendicular lamellar nanopatterns over large areas, effectively mitigating environmental fluctuations and emulating solvent-vapor annealing without solvent exposure. Resulting BCP structures demonstrate enhanced spatial coherence and notably low defect density. Furthermore, we successfully transfer these nanopatterns into precise metal nano-line arrays,confirming the method's capability for high-fidelity pattern replication. This scalable, solvent-free technique provides a robust, reliable route for high-resolution nanopatterning in advanced semiconductor manufacturing.展开更多
In-space 3D printing is transforming the manufacturing paradigm of space structures from ground-based production to in-situ space manufacturing,effectively addressing the challenges of high costs,long response times,a...In-space 3D printing is transforming the manufacturing paradigm of space structures from ground-based production to in-situ space manufacturing,effectively addressing the challenges of high costs,long response times,and structural size limitations associated with traditional rocket launches.This technology enables rapid on-orbit emergency repairs and significantly expands the geometric dimensions of space structures.High-performance polymers and their composites are widely used in in-space 3D printing,yet their implementation faces complex challenges posed by extreme space environmental conditions and limited energy or resources.This paper reviews the state-of-the-art in 3D printing of polymer and composites for on-orbit structure manufacturing.Based on existing research activities,the review focuses on three key aspects including the impact of extreme space environments on forming process and performance,innovative design and manufacturing methods for space structures,and on-orbit recycling and remanufacturing of raw materials.Some experiments that have already been conducted on-orbit and simulated experiments completed on the ground are systematically analyzed to provide a more comprehensive understanding of the constraints and objectives for on-orbit structure manufacturing.Furthermore,several perspectives requiring further research in future are proposed to facilitate the development of new in-space 3D printing technologies and space structures,thereby supporting increasingly advanced space exploration activities.展开更多
The reduction of nitrobenzene to aniline is very important for both pollution control and chemical synthesis.Nevertheless,difficulties still remain in developing a catalytic system having high efficiency and selectivi...The reduction of nitrobenzene to aniline is very important for both pollution control and chemical synthesis.Nevertheless,difficulties still remain in developing a catalytic system having high efficiency and selectivity for the production of aniline.Herein,it was found that PdO nanoparticles highly dispersed on TiO_(2)support(PdO/TiO_(2))functioned as a highly efficient catalyst for the reduction of nitrobenzene in the presence of NaBH4.Under favorable conditions,95%of the added nitrobenzene(1 mmol/L)was reduced within 1 min with an ultra-low apparent activation energy of 10.8 kJ/mol by using 0.5%PdO/TiO_(2)as catalysts and 2 mmol/L of NaBH4 as reductants,and the selectivity to aniline even reached up to 98%.The active hydrogen specieswere perceived as dominant species during the hydrogenation of nitrobenzene by the results of isotope labeling experiments and ESR spectroscopic.A mechanismwas proposed as follows:PdO activates the nitro groups and leads to in-situ generation of Pd,and the generated Pd acts as the reduction sites to produce active hydrogen species.In this catalytic system,nitrobenzene prefers to be adsorbed on the PdO nanoparticles of the PdO/TiO_(2)composite.Subsequently,the addition of NaBH_(4) results in in-situ generation of a Pd/PdO/TiO_(2)composite from the PdO/TiO_(2)composite,and the Pd nanoclusters would activate NaBH_(4) to generate active hydrogen species to attack the adsorbed nitro groups.This work will open up a new approach for the catalytic transfer hydrogenation of nitrobenzene to aniline in green chemistry.展开更多
文摘目的探讨术前酰胺质子转移(APT)成像联合血清糖类抗原125(cancer antigen 125,CA125)预测宫颈癌淋巴脉管间隙侵犯(LVSI)的价值。方法选取40例术前行MRI检查并术后病理资料完整的宫颈癌患者。术前1~2周进行盆腔MRI检查和静脉采血,分别获得相应的APT值和血清CA125水平,并根据术后病理结果确定是否发生LVSI。比较单独或联合应用APT值和血清CA125对宫颈癌LVSI的预测作用。结果40例中经病理证实29例发生LVSI,11例无LVSI。术前APT值、血清CA125水平预测宫颈癌LVSI的受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)分别为0.889、0.687,APT值为2.9%时,其对应的约登指数最大(0.702),敏感度为79.3%,特异度为90.9%。术前血清CA125水平临界值为25.3 U/mL时,其对应的约登指数最大(0.508),敏感度为69.0%,特异度为81.8%。术前APT成像联合血清CA125预测宫颈癌LVSI的敏感度为82.7%,特异度为100%,约登指数为0.828,AUC为0.923。结论术前APT成像联合血清CA125在预测宫颈癌LVSI中具有重要的价值,当APT值>2.9%、血清CA125>25.3 U/mL时诊断效能最佳。
基金supported by the National Key R&D Program of China (Grant Nos. 2023YFC3010703, 2020YFB1708800, and 2023YFC3010705)。
文摘Optically transparent microwave absorbers and multi-band stealth have extensive potential applications in military defense and wireless communication fields, and thus have attracted considerable attention. So far,most related work is based on inorganic transparent conductive metasurfaces. In this paper, we proposed and experimentally demonstrated a flexible, broadband and optically transparent microwave absorber using an organic metasurface. The metasurface absorber is composed of a sandwich structure, in which electric resonances and magnetic resonances are induced resulting in broadband absorption. A spraying process was developed to prepare this metasurface absorber. Both simulations and experiment show that this metasurface has broadband microwave absorption and good optical transparency. We further found that by using a multi-layer structure, visible, radar,and infrared stealth(multi-band stealth) can be achieved simultaneously. With the advantages of excellent foldability and low cost, the proposed metasurfaces may have applications in military and wireless communication fields.
基金supported by the National Natural Science Foundation of China (Grant Nos.U20A20168 and 62404120)the National Key R&D Program (Grant No.2022YFB3204100)+2 种基金the Postdoctoral Fellowship Program of CPSF (Grant Nos.GZB20240335 and GZC20231216)the China Postdoctoral Science Foundation (Grant No.2025T180151)the Initiative Scientific Research Program of the School of Integrated Circuits,Tsinghua University。
文摘Block copolymer(BCP) nanolithography offers potential beyond traditional photolithographic limits, yet reliably producing low-defect, perpendicular domains remains challenging. We introduce a microenvironmentdriven isothermal annealing method for directed self-assembly of BCP thin films. By annealing films at stable temperature in a quasi-sealed, inert-gas chamber, our approach promotes highly uniform perpendicular lamellar nanopatterns over large areas, effectively mitigating environmental fluctuations and emulating solvent-vapor annealing without solvent exposure. Resulting BCP structures demonstrate enhanced spatial coherence and notably low defect density. Furthermore, we successfully transfer these nanopatterns into precise metal nano-line arrays,confirming the method's capability for high-fidelity pattern replication. This scalable, solvent-free technique provides a robust, reliable route for high-resolution nanopatterning in advanced semiconductor manufacturing.
基金supported by National Natural Science Foundation of China(Grant No.52205413)National Key Research and Development Program(Grant No.2022YFB3806101)+1 种基金K C Wong Education FoundationThe Youth Innovation Team of Shaanxi Universities。
文摘In-space 3D printing is transforming the manufacturing paradigm of space structures from ground-based production to in-situ space manufacturing,effectively addressing the challenges of high costs,long response times,and structural size limitations associated with traditional rocket launches.This technology enables rapid on-orbit emergency repairs and significantly expands the geometric dimensions of space structures.High-performance polymers and their composites are widely used in in-space 3D printing,yet their implementation faces complex challenges posed by extreme space environmental conditions and limited energy or resources.This paper reviews the state-of-the-art in 3D printing of polymer and composites for on-orbit structure manufacturing.Based on existing research activities,the review focuses on three key aspects including the impact of extreme space environments on forming process and performance,innovative design and manufacturing methods for space structures,and on-orbit recycling and remanufacturing of raw materials.Some experiments that have already been conducted on-orbit and simulated experiments completed on the ground are systematically analyzed to provide a more comprehensive understanding of the constraints and objectives for on-orbit structure manufacturing.Furthermore,several perspectives requiring further research in future are proposed to facilitate the development of new in-space 3D printing technologies and space structures,thereby supporting increasingly advanced space exploration activities.
基金supported by the National Natural Science Foundation of China (No.22076052)the Natural Science Foundation of Hubei Province (Nos.2021CFB535 and 2020CFB437)+2 种基金the Knowledge Innovation Program of Wuhan-Basic Research (No.SZY23005)the Fundamental Research Funds for the Central Universities,South-Central Minzu University (No.CZQ22002)Wuhan University (No.2042020kf0036).
文摘The reduction of nitrobenzene to aniline is very important for both pollution control and chemical synthesis.Nevertheless,difficulties still remain in developing a catalytic system having high efficiency and selectivity for the production of aniline.Herein,it was found that PdO nanoparticles highly dispersed on TiO_(2)support(PdO/TiO_(2))functioned as a highly efficient catalyst for the reduction of nitrobenzene in the presence of NaBH4.Under favorable conditions,95%of the added nitrobenzene(1 mmol/L)was reduced within 1 min with an ultra-low apparent activation energy of 10.8 kJ/mol by using 0.5%PdO/TiO_(2)as catalysts and 2 mmol/L of NaBH4 as reductants,and the selectivity to aniline even reached up to 98%.The active hydrogen specieswere perceived as dominant species during the hydrogenation of nitrobenzene by the results of isotope labeling experiments and ESR spectroscopic.A mechanismwas proposed as follows:PdO activates the nitro groups and leads to in-situ generation of Pd,and the generated Pd acts as the reduction sites to produce active hydrogen species.In this catalytic system,nitrobenzene prefers to be adsorbed on the PdO nanoparticles of the PdO/TiO_(2)composite.Subsequently,the addition of NaBH_(4) results in in-situ generation of a Pd/PdO/TiO_(2)composite from the PdO/TiO_(2)composite,and the Pd nanoclusters would activate NaBH_(4) to generate active hydrogen species to attack the adsorbed nitro groups.This work will open up a new approach for the catalytic transfer hydrogenation of nitrobenzene to aniline in green chemistry.