Fluorine(F)-enriched soils,resulting from geogenic processes or superimposed by anthropogenic activities,have raised significant concerns due to their phytotoxicity and potential threats to human health.Soils in centr...Fluorine(F)-enriched soils,resulting from geogenic processes or superimposed by anthropogenic activities,have raised significant concerns due to their phytotoxicity and potential threats to human health.Soils in central Guizhou Province exhibit F enrichment,with a mean F concentration of 1067 mg/kg.However,the associated human health risks and geochemical mechanisms driving F enrichment in these soils remain insufficiently understood.In areas with a natural geological background,the average concentrations of F in rice,vegetables,drinking water,and ambient air are 1.54 mg/kg,0.54 mg/kg,0.16 mg/L,and 0.29μg/m^(3),respectively.In contrast,samples collected near phosphorous chemical plants demonstrate elevated F concentrations:1.78 mg/kg in rice,1.53 mg/kg in vegetables,0.20 mg/L in drinking water,and 11.98μg/m^(3) in ambient air.Fluorine in soils was immobilized by apatite and clay minerals,and hardly transferred into water and crops.The fixation of F-by Ca^(2+)in water and by Fe/Al hydroxides and clay minerals in bottom sediment further reduces F concentrations in water.As a result,hazard quotient(HQ)values below 1.0 indicate negligible fluorine-related health risk in geological background regions.However,ambient air near phosphorous chemical plant exhibited a 41.3-fold increase in F concentration compared to geological background regions.Fluorine-laden emissions can be directly inhaled or deposited on vegetable leaves and orally ingested into human bodies.Improvement of F-rich waste gas disposal and restricted leafy vegetable cultivation are effective measures to reduce F health risks in phosphorous chemical plant regions.展开更多
基金supported by the projects of the China Geological Survey(DD20230543,DD20221770).
文摘Fluorine(F)-enriched soils,resulting from geogenic processes or superimposed by anthropogenic activities,have raised significant concerns due to their phytotoxicity and potential threats to human health.Soils in central Guizhou Province exhibit F enrichment,with a mean F concentration of 1067 mg/kg.However,the associated human health risks and geochemical mechanisms driving F enrichment in these soils remain insufficiently understood.In areas with a natural geological background,the average concentrations of F in rice,vegetables,drinking water,and ambient air are 1.54 mg/kg,0.54 mg/kg,0.16 mg/L,and 0.29μg/m^(3),respectively.In contrast,samples collected near phosphorous chemical plants demonstrate elevated F concentrations:1.78 mg/kg in rice,1.53 mg/kg in vegetables,0.20 mg/L in drinking water,and 11.98μg/m^(3) in ambient air.Fluorine in soils was immobilized by apatite and clay minerals,and hardly transferred into water and crops.The fixation of F-by Ca^(2+)in water and by Fe/Al hydroxides and clay minerals in bottom sediment further reduces F concentrations in water.As a result,hazard quotient(HQ)values below 1.0 indicate negligible fluorine-related health risk in geological background regions.However,ambient air near phosphorous chemical plant exhibited a 41.3-fold increase in F concentration compared to geological background regions.Fluorine-laden emissions can be directly inhaled or deposited on vegetable leaves and orally ingested into human bodies.Improvement of F-rich waste gas disposal and restricted leafy vegetable cultivation are effective measures to reduce F health risks in phosphorous chemical plant regions.