Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility...Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility to secondary pollution in application.Calcium sulfite(CaSO_(3)),one of the byproducts of flue gas desulfurization,is of interest in AOPs because of its ability to slowly release S(Ⅳ),low toxicity,and costeffectiveness.Therefore,a heterogenous activator,molybdenum carbide(Mo_(2)C)was selected to stimulate Ca SO3for typical antibiotic elimination.Benefiting from the dissociation form of HSO_(3^(-))from CaSO_(3)and improved electron transfer of Mo_(2)C at pH 6,the simulated target metronidazole(MTZ)can be removed by 85.65%with rate constant of 0.02424 min^(-1)under near-neutral circumstance.The combining determinations of quenching test,electron spin resonance spectrum,and reactive species probe demonstrated singlet oxygen(^(1)O_(2))and sulfate radicals played leading role for MTZ decontamination.Characterization and theoretical calculation suggested the alteration of Mo valence state drove the activation of S(Ⅳ),and revealed that dissolved oxygen promoted the adsorption of HSO_(3^(-))on the surface of Mo_(2)C,then facilitating production of^(1)O_(2).The favorable stability and applicability for Mo_(2)C/CaSO_(3)process indicated an applied prospect in actual pharmaceutical wastewater.展开更多
基金the support received from the National Natural Science Foundation of China(No.51908485)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(Nos.246Z3603G and 226Z3603G)。
文摘Common activations of sulfite(S(Ⅳ))-based advanced oxidation processes(AOPs)utilized metal ions and oxides as catalysts,which are constrained by challenges in catalyst recovery,inadequate stability,and susceptibility to secondary pollution in application.Calcium sulfite(CaSO_(3)),one of the byproducts of flue gas desulfurization,is of interest in AOPs because of its ability to slowly release S(Ⅳ),low toxicity,and costeffectiveness.Therefore,a heterogenous activator,molybdenum carbide(Mo_(2)C)was selected to stimulate Ca SO3for typical antibiotic elimination.Benefiting from the dissociation form of HSO_(3^(-))from CaSO_(3)and improved electron transfer of Mo_(2)C at pH 6,the simulated target metronidazole(MTZ)can be removed by 85.65%with rate constant of 0.02424 min^(-1)under near-neutral circumstance.The combining determinations of quenching test,electron spin resonance spectrum,and reactive species probe demonstrated singlet oxygen(^(1)O_(2))and sulfate radicals played leading role for MTZ decontamination.Characterization and theoretical calculation suggested the alteration of Mo valence state drove the activation of S(Ⅳ),and revealed that dissolved oxygen promoted the adsorption of HSO_(3^(-))on the surface of Mo_(2)C,then facilitating production of^(1)O_(2).The favorable stability and applicability for Mo_(2)C/CaSO_(3)process indicated an applied prospect in actual pharmaceutical wastewater.