Micro-environmental restriction effects to yeast cell growth obtained within Ca-alginate microbeads are considered. It is complex phenomenon influenced by: (1) relaxation of expanded polymer network around the cellula...Micro-environmental restriction effects to yeast cell growth obtained within Ca-alginate microbeads are considered. It is complex phenomenon influenced by: (1) relaxation of expanded polymer network around the cellular clusters, (2) forces generated by cell growth inside the beads and (3) interactions between solvent, network parts and cells. The resulting effects are measured experimentally by estimating volume of microbeads and yeast cell concentration as function of time of cultivation. Comparative analysis of dynamics of cell growth and increase of microbead volume through four regimes indicates that reversible and irreversible local structural changes of Ca-alginate hydrogel induces micro-environmental restrictions to cell growth. The mechanism of restrictions includes both mechanical and electrostatic effects.展开更多
Mathematical model is developed to estimate hemoglobin release under hypotonic conditions at microscopic level. The phenomenon of hemoglobin (Hb) release depends on: 1) the dynamics of repeated opening of hemolytic ho...Mathematical model is developed to estimate hemoglobin release under hypotonic conditions at microscopic level. The phenomenon of hemoglobin (Hb) release depends on: 1) the dynamics of repeated opening of hemolytic holes and 2) the radial fluctuations of lipid membrane. Both processes are sensitive to the rate of ionic strength decrease within the surrounding medium. Influence of the rate of ionic strength decrease on hemoglobin release is quantified by the model parameters: 1) the specific decrease of erythrocyte radius and 2) the specific decrease of hole radius during single opening time period of hemolytic hole. The prediction of released amount of Hb influenced by the conductive mechanism is equal to 2.9 %. The prediction of total released amount of Hb influenced by the conductive and convective mechanisms is approximately equal to 4 % of the initial amount of Hb within erythrocyte.展开更多
文摘Micro-environmental restriction effects to yeast cell growth obtained within Ca-alginate microbeads are considered. It is complex phenomenon influenced by: (1) relaxation of expanded polymer network around the cellular clusters, (2) forces generated by cell growth inside the beads and (3) interactions between solvent, network parts and cells. The resulting effects are measured experimentally by estimating volume of microbeads and yeast cell concentration as function of time of cultivation. Comparative analysis of dynamics of cell growth and increase of microbead volume through four regimes indicates that reversible and irreversible local structural changes of Ca-alginate hydrogel induces micro-environmental restrictions to cell growth. The mechanism of restrictions includes both mechanical and electrostatic effects.
文摘Mathematical model is developed to estimate hemoglobin release under hypotonic conditions at microscopic level. The phenomenon of hemoglobin (Hb) release depends on: 1) the dynamics of repeated opening of hemolytic holes and 2) the radial fluctuations of lipid membrane. Both processes are sensitive to the rate of ionic strength decrease within the surrounding medium. Influence of the rate of ionic strength decrease on hemoglobin release is quantified by the model parameters: 1) the specific decrease of erythrocyte radius and 2) the specific decrease of hole radius during single opening time period of hemolytic hole. The prediction of released amount of Hb influenced by the conductive mechanism is equal to 2.9 %. The prediction of total released amount of Hb influenced by the conductive and convective mechanisms is approximately equal to 4 % of the initial amount of Hb within erythrocyte.