期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Differentiation of Fungal Destructive Behaviour of Wood by the White-Rot Fungus Fomes fomentarius by MALDI-TOF Mass Spectrometry 被引量:1
1
作者 Ehsan Bari Antonio Pizzi +3 位作者 Olaf Schmidt Siham Amirou Mohammad Ali Tajick-Ghanbary miha humar 《Journal of Renewable Materials》 SCIE EI 2021年第3期381-397,共17页
There are many methods to identify and recognize the molecular and behavioural differences between organisms.One of the methods for the detection and identification of unknown organisms as well as intermolecular and i... There are many methods to identify and recognize the molecular and behavioural differences between organisms.One of the methods for the detection and identification of unknown organisms as well as intermolecular and intramolecular structural differences is MALDI-TOF mass spectrometry.Therefore,differentiation of Fomes fomentarius decay capabilities on the chemical properties of the wood cell wall of the tree species Quercus castaneifolia,Juglans regia,and Carpinus betulus were used to determine and characterize the destructive behaviour of F.fomentarius decay by MALDI-TOF mass spectrometry.The results showed that the fungus had more significant destructive behaviour on J.regia than the other species.For this evidence,completely removal of xylan hemicellulose fragment+Na+at peak 1227 Da and severe digestion of fragment of glucomannan hemicellulose at peak 1477–1480 Da that it seems that signs of soft-rot patterns were obtained from the decayed sample of J.regia,while these were incremental and unchanged for C.betulus and Q.castaneifolia,respectively.However,C.betulus had different peaks of atomic mass than J.regia and Q.castaneifolia wood,respectively.These results showed that this technique could be useful for separating and identifying unknown compounds of the wood cell wall attacked by fungi relying on their biological behaviour. 展开更多
关键词 WHITE-ROT Fomes fomentarius MALDI-TOF fungal destructive behaviours
在线阅读 下载PDF
Water Absorption Capacity and Coating Adhesion on Thermally Modified and Not-Modified Spruce Wood(Blue Stained or Free of Blue Stained)
2
作者 Demiao Chu Redžo Hasanagić +2 位作者 Leila Fathi Mohsen Bahmani miha humar 《Journal of Renewable Materials》 EI 2023年第12期4061-4078,共18页
This study aimed to investigate the water absorption capacity of thermally modified and non-modified spruce and blue-stained spruce wood.The wettability of wood depends on various factors,including its type,density,po... This study aimed to investigate the water absorption capacity of thermally modified and non-modified spruce and blue-stained spruce wood.The wettability of wood depends on various factors,including its type,density,porosity,and surface treatment.Wood can swell and become distorted when exposed to water or humidity,impacting its structural integrity.Hence,it is crucial to consider the water and water vapour uptake in the wood when choosing materials for applications that are likely to be exposed to moisture.Various moisture absorption tests were conducted to assess water absorption capacity,including short-term and long-term water absorption and water vapour absorption.The results showed a significant difference in the long-term exposure to water,which was related to the density of the wood.The study examined the influence of thermal treatment on the physical properties of wood and observed significant variations in mass change due to coating,indicating differences in adhesion among different wood types.Vacuum-treated blue-stained Norway spruce demonstrated higher adhesion(5%–15%)compared to air-treated samples.Furthermore,cohesion tests revealed lower cohesion force in blue-stained Norway spruce(approximately 20%–30%)compared to Norway spruce.The study also used industry-standard tests to investigate the adhesion and cohesion of nano-coatings on wood surfaces.The results provided valuable information on the properties of coatings applied to wood,which is vital in protecting and decorating wood while also providing preventive protection against wood pests,weathering,and mechanical influences.Wood modification in vacuum involves subjecting the wood to a low-pressure environment to remove air and moisture,allowing for deeper and more uniform penetration of treatment chemicals.In contrast,wood modification in air relies on the natural circulation of air to facilitate the absorption of chemical treatments,without the need for a vacuum chamber. 展开更多
关键词 Wood durability long-term exposure moisture absorption WETTABILITY ABSORPTION
在线阅读 下载PDF
Evaluation of Mechanical Properties and Surface Quality of Wood from Bosnia and Herzegovina Exposed to Outdoor Conditions
3
作者 Redžo Hasanagić UmejrŠljivo +3 位作者 Leila Fathi Pallavi Gautam Mohsen Bahmani miha humar 《Journal of Renewable Materials》 EI CAS 2024年第8期1417-1431,共15页
This study investigated the mechanical properties of beech(Fagus sylvatica L.)and fir(Abies alba)wood from Bosnia and Herzegovina under outdoor exposure.Samples were exposed for 3-month exposure to assess bending stre... This study investigated the mechanical properties of beech(Fagus sylvatica L.)and fir(Abies alba)wood from Bosnia and Herzegovina under outdoor exposure.Samples were exposed for 3-month exposure to assess bending strength,color changes,and surface quality.Results showed outdoor exposure negatively affected mechanical properties,particularly in samples with extended finger joints,causing significant surface cracks in uncoated samples.Beech wood exhibited notable color changes under exposure,with approximately 50%darkening without coating compared to 25%under covered conditions.Coated samples displayed minimal color changes,affirming the efficacy of surface treatment.Fir wood exhibited a roughness of 8.264μm,while beechwood average roughness increased from 6.767 to 13.916μm after exposure,with micro-pore development affecting water performance.Microscopic analysis identified prevalent fungal colonies,including Penicillium,Aureobasidium,Sclerophoma,and Chaetomium,underscoring their role in organic matter decomposition.This study highlights the importance of wood exposure and treatment selection for various applications. 展开更多
关键词 Mechanical properties outdoor conditions cracks wood species
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部