Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells(PSCs).When located at the front,they may act as a UV barrier,which is paramount for protecting the perovskite layer ag...Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells(PSCs).When located at the front,they may act as a UV barrier,which is paramount for protecting the perovskite layer against UVenabled degradation.Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping,it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains.Here,we propose a checkerboard(CB)tile pattern with designated UV photon conversion capability.Through a combined optical and electrical modeling approach,this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9%and 28.2%,respectively.We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum.To this end,experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials(i.e.,lanthanidebased organic-inorganic hybrids)are used to predict potential gains from harnessing the UV energy.We demonstrate that at least 94%of the impinging UV radiation can be effectively converted into the Visible spectral range.Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology,and may become crucial for Space applications under AM0 illumination.By combining light trapping with luminescent downshifting layers,this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells,thus improving both performance and stability.展开更多
基金financed by national funds from FCT(Fundação para a Ciência e Tecnologia,I.P.)in the scope of the projects LA/P/0037/2020,UIDP/50025/2020,and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures,Nanomodelling,and Nanofabrication-i3N,and the FCT,I.P.project SpaceFlex(2022.01610.PTDC)as well as by M-ECO2 project(Industrial cluster for advanced biofuel production,Ref.C644930471-00000041)cofinanced by PRR-Recovery and Resilience Plan of the European Union(Next Generation EU)+3 种基金This work was also developed within the scope of the projects:CICECO-Aveiro Institute of Materials,UIDB/50011/2020,UIDP/50011/2020,and LA/P/0006/2020 financed by national funds through the FCT,I.P.(PIDDAC)S.H.acknowledges the support from FCT,I.P.through the AdvaMTech Ph.D.program scholarship PD/BD/143031/2018S.H.and S.Y.acknowledge the support of the SRP-JRP project(non-EE046)M.A.also acknowledges the support from FCT,I.P.through the Ph.D.scholarship grant SFRH/BD/148078/2019.
文摘Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells(PSCs).When located at the front,they may act as a UV barrier,which is paramount for protecting the perovskite layer against UVenabled degradation.Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping,it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains.Here,we propose a checkerboard(CB)tile pattern with designated UV photon conversion capability.Through a combined optical and electrical modeling approach,this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9%and 28.2%,respectively.We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum.To this end,experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials(i.e.,lanthanidebased organic-inorganic hybrids)are used to predict potential gains from harnessing the UV energy.We demonstrate that at least 94%of the impinging UV radiation can be effectively converted into the Visible spectral range.Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology,and may become crucial for Space applications under AM0 illumination.By combining light trapping with luminescent downshifting layers,this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells,thus improving both performance and stability.