期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
P doped Ni_(3)S_(2)and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction
1
作者 Mengzhao Liu Jie Yin +4 位作者 Chengjian Wang Weiji Wang Yuan Gao mengxia yan Ping Geng 《Chinese Chemical Letters》 2025年第9期384-389,共6页
The biomass electrochemical oxidation coupled with hydrogen evolution reaction has received widespread attention due to its carbon-neutral and sustainable properties.The electrosynthesis of 2,5-furanodicarboxylic acid... The biomass electrochemical oxidation coupled with hydrogen evolution reaction has received widespread attention due to its carbon-neutral and sustainable properties.The electrosynthesis of 2,5-furanodicarboxylic acid(FDCA)from 5-hydroxymethylfurfural(HMF)oxidation is one of the most promising means for the production of bioplastic monomers.In this work,we constructed a novel P-doped Ni_(3)S_(2)and Ni heterojunction on nickel foam(P-Ni_(3)S_(2)/Ni/NF)using electrodeposition methods and thermal sulfuration techniques as a bifunctional catalyst for the simultaneous anodic oxidation of HMF to FDCA(HMFOR)and the cathodic hydrogen evolution reaction(HER).On one hand,the synergistic promotion of P doping and the heterojunction of Ni_(3)S_(2)and Ni accelerated electron transfer,and on the other hand,the structure of three-dimensional microsphere stacking on NF surface to form macropores enhances the exposure of catalytically active sites.The prepared P-Ni_(3)S_(2)/Ni/NF exhibited remarkable performance with high HMF conversion(99.2%),FDCA yield(98.1%),and Faraday efficiency(98.8%),and excellent stability with good product selectivity for 7 consecutive cycles,which stands at a higher level than majority of previously published electrocatalysts.Furthermore,P-Ni_(3)S_(2)/Ni/NF also shows a significant response in HER.By using HMFOR and HER as the anodic reaction and cathodic reaction,respectively,the biomass upgrading and hydrogen production can be carried out simultaneously.The synthesized P-Ni_(3)S_(2)/Ni/NF only need a voltage of 1.31V to achieve a current density of 10mA/cm^(2)in a two-electrode system of HMFOR and HER,which is much lower than that of 1.48 V in OER and HER process,thus potentially reducing the cost of this process. 展开更多
关键词 5-Hydroxymethylfurfural oxidation Hydrogen evolution reaction Bifunctional electrocatalyst P-doped Ni_(3)S_(2)
原文传递
In situ formation of fluorescent silicon-containing polymer dots for alkaline phosphatase activity detection and immunoassay 被引量:3
2
作者 Guoyong Liu Jiahui Zhao +4 位作者 mengxia yan Shuyun Zhu Wenchao Dou Jian Sun Xiurong yang 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第4期554-560,共7页
The discovery and application of analyte-triggered fluorophore generation or fluorogenic reaction are significant and beneficial to the development of novel fluorescence(FL) analysis method. In this study, for the fir... The discovery and application of analyte-triggered fluorophore generation or fluorogenic reaction are significant and beneficial to the development of novel fluorescence(FL) analysis method. In this study, for the first time, we have reported a fluorogenic reaction to prepare fluorescent silicon-containing polymer dots(Si-PDs) by simply mixing N-[3-(trimethoxysilyl)propyl]ethylenediamine(DAMO) and hydroquinone(HQ) in aqueous solution at ambient temperature. Inspired by the alkaline phosphatase(ALP)-catalyzed hydrolysis of the substrate sodium 4-hydroxyphenyl phosphate(4-HPP) into HQ and the resultant HQcontrolled intense green Si-PDs generation, we have established a straightforward ALP activity assay by innovatively employing commercially available 4-HPP as the substrate. More significantly, the specific preparation method, clear formation mechanism and excellent performance enable the Si-PDs as well as its generation process to develop facile and attractive FL immunoassay.With the help of the universal ALP-based enzyme-linked immunosorbent assay(ELISA) platform and corresponding antibody, a convenient and conceptual ALP-based fluorescent ELISA has been constructed and applied in sensing cardiac troponin Ⅰ(cTnI),a well-known biomarker of acute myocardial infarction. Our research via in situ formation of fluorescent nanomaterials has great potential application in ALP activity assay, inhibitor screening, and disease diagnosis. 展开更多
关键词 FLUORESCENT POLYMER DOTS ELISA alkaline PHOSPHATASE cardiac troponinⅠ
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部