期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nicotinamide adenine dinucleotide(NAD^(+))reduction enabled by an atomically precise Au-Ag alloy nanocluster
1
作者 Ling Chen Yonglei Du +6 位作者 Ying Lv Daoqing Fan Junfei Wu Lingbao Wu mengting cui Haizhu Yu Manzhou Zhu 《Nano Research》 SCIE EI CSCD 2023年第5期7770-7776,共7页
The redox property of the ultrasmall coinage nanoclusters(with several to tens of Au/Ag atoms)has elucidated the electrontransfer capacity of nanoclusters,has been successfully utilized in a variety of redox conversio... The redox property of the ultrasmall coinage nanoclusters(with several to tens of Au/Ag atoms)has elucidated the electrontransfer capacity of nanoclusters,has been successfully utilized in a variety of redox conversions(such as from CO_(2)to CO).Nevertheless,their biological applications are mainly restricted by the scarcity of atomically precise,water-soluble metal nanoclusters,the limited application(mainly on the decomposition of H_(2)O_(2)in these days).Herein,mercaptosuccinic acid(MSA)protected ultrasmall alloy AuAg nanoclusters were prepared,the main product was determined[Au_(3)Ag_(5)(MSA)_(3)]−by electrospray ionization mass spectrometry(ESI-MS).The clusters can not only mediate the decomposition of H_(2)O_(2)to generate hydroxyl radicals,but is also able to mediate the reduction of nicotinamide adenine dinucleotide(NAD)to its reduced form of NADH.This is the first time that the atomically precise metal nanoclusters were used to mediate the coenzyme reduction.The preliminary mechanistic insights imply the reaction to be driven by the hydrogen bonding between the carboxylic groups(on the surface of MSA)and the amino N–H bonds(on NAD).In this context,the presence of the carboxylic groups,the sub-nanometer size regime(~1 nm),the synergistic effect of the Au-Ag clusters are pre-requisite to the NAD reduction. 展开更多
关键词 redox-activity alloy AuAg nanocluster nicotinamide adenine dinucleotide(NAD)reduction synergistic effect size-effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部