期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Perfect separation of pyridine and 3-methylpyridine by cucurbit[6]uril
1
作者 Yongqing Zeng Caijun Liang +7 位作者 Xin Lu Lingxue Zhao Fangting Wu Tao Hou Anting Zhao menglan lv Zhu Tao Qing Li 《Chinese Chemical Letters》 2025年第9期330-333,共4页
Pyridine(Py) and 3-methylpyridine(3-MP) are crucial intermediates in chemical industrial processes.Here,we provide a simple and energy-efficient approach for the isolation of Py and 3-MP by employing crystalline cucur... Pyridine(Py) and 3-methylpyridine(3-MP) are crucial intermediates in chemical industrial processes.Here,we provide a simple and energy-efficient approach for the isolation of Py and 3-MP by employing crystalline cucurbit[6]uril(Q[6]).The crystal exhibit high selectivity for Py from the mixture of Py and 3-MP in both vapor and liquid phases,with separation purities close to 100%.The selectivity is attributed to the varying stability of the host-vip complexes after the absorption of Py or 3-MP,as revealed by the single-crystal structure analysis.ITC experimental results and DFT calculations indicate that,compared to3-MP,Q[6] has a higher binding strength and lower binding energy with Py.In addition,pyridine can be removed from the Q[6] cavity through vacuum heating or organic solvent immersion,enabling Q[6]reuse via reversible vip loading.This method offers a promising approach for high-purity Py and 3-MP separation with significant economic and environmental benefits. 展开更多
关键词 uril Molecules separation Adsorptive separation Host–vip complexation Supramolecular chemistry
原文传递
Engineering fibrillar morphology for highly efficient organic solar cells
2
作者 Chengcheng Xie Bin Zhang +1 位作者 menglan lv Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期7-9,共3页
The power conversion efficiency(PCE)for single-junction organic solar cells(OSCs),wherein the photoactive layer is a typical bulk-heterojunction containing donor and acceptor materials,has surpassed 19%[1−4].The advan... The power conversion efficiency(PCE)for single-junction organic solar cells(OSCs),wherein the photoactive layer is a typical bulk-heterojunction containing donor and acceptor materials,has surpassed 19%[1−4].The advance is ascribed to the development of Y-series non-fullerene acceptors(NFAs)[5,6]and polymer donors[7−13],and the refined control of the blend film morphology. 展开更多
关键词 MORPHOLOGY refined DONOR
在线阅读 下载PDF
Combining chlorination and sulfuration strategies for high-performance all-small-molecule organic solar cells 被引量:3
3
作者 Ruimin Zhou Chen Yang +8 位作者 Wenjun Zou Muhammad Abdullah Adil Huan Li Min lv Ziyun Huang menglan lv Jianqi Zhang Kun Lu Zhixiang Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期228-233,I0008,共7页
Three small-molecule donors based on dithieno [2,3-d:2’,3 ’-d’]-benzo[1,2-b:4,5-b’] dithiophene(DTBDT)unit were designed and synthesized by side chain regulation with chlorinated or/and sulfurated substitutions(na... Three small-molecule donors based on dithieno [2,3-d:2’,3 ’-d’]-benzo[1,2-b:4,5-b’] dithiophene(DTBDT)unit were designed and synthesized by side chain regulation with chlorinated or/and sulfurated substitutions(namely ZR1,ZR1-Cl,and ZR1-S-Cl respectively),along with a crystalline non-fullerene acceptor IDIC-4 Cl with a chlorinated 1,1-dicyanomethylene-3-indanone(IC) end group.Energy levels,molar extinction coefficients and crystallinities of three donor molecules can be effectively altered by combining chlorination and sulfuration strategies.Especially,the ZR1-S-Cl exhibited the best absorption ability,lowest higher occupied molecular orbital(HOMO) energy level and highest crystallinity among three donors,resulting in the corresponding all-small-molecule organic solar cells to produce a high power conversion efficiency(PCE) of 12.05% with IDIC-4 Cl as an acceptor. 展开更多
关键词 All-small-molecule Chlorination and sulfuration Fibrous morphology CRYSTALLINITY
在线阅读 下载PDF
High electron mobility fluorinated indacenodithiophene small molecule acceptors for organic solar cells 被引量:1
4
作者 Fei Pan Xiaojun Li +8 位作者 Song Bai Tianhao Liu Xian Wei Yingfen Li Shanshan Chen Changduk Yang Xiwen Chen menglan lv Yongfang Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第3期1257-1262,共6页
Indacenodithiophene(IDT)derivatives are kinds of the most representative and widely used cores of small molecule acceptors(SMAs)in organic solar cells(OSCs).Here we systematically investigate the influence of end-grou... Indacenodithiophene(IDT)derivatives are kinds of the most representative and widely used cores of small molecule acceptors(SMAs)in organic solar cells(OSCs).Here we systematically investigate the influence of end-group fluo rination density and position on the photovoltaic properties of the IDT-based SMAs IDIC-nF(n=0,2,4).The absorption edge of IDIC-nF red-shifts with theπ-πstacking and crystallinity improvement,and their electronic energy levels downshift with increasing n.Due to the advantages of J_(sc)and FF as well as acceptable V_(oc),the difluorinated IDIC-2 F acceptor based OSCs achieve the highest power conversion efficiency(PCE)of 13%,better than the OSC devices based on IDIC and IDIC-4 F as acceptors.And the photovoltaic performance of the PTQ10:IDIC-2 F OSCs is insensitive to the active layer thickness:PCE still keep high values of 12.00%and 11.46%for the devices with active layer thickness of 80 and 354 nm,respectively.This work verifies that fine and delicate modulation of the SMAs molecular structure could optimize photovoltaic performance of the corresponding OSCs.Meanwhile,the thickness-insensitivity property of the OSCs has potential for large-scale and printable fabrication technology. 展开更多
关键词 Organic solar cells Indacenodithiophene Electron mobility FLUORINATION π-πStacking CRYSTALLINITY
原文传递
Synergistic fibrillization engineering in donor and acceptor phases enables high-performance all-polymer solar cells
5
作者 Bin Zhang Yushou Zhao +9 位作者 Xiaofeng Qin Aiqin Li Xinling Li Wenming Li Weile Guo Xiaolan Qin Zhicai He Yong Hua menglan lv Liming Ding 《Nano Research》 2025年第4期219-227,共9页
Recently,all-polymer solar cells(all-PSCs)have become an important organic photovoltaic technology,ascribing to their unique characteristics of high stability and mechanical endurance.However,the morphology control be... Recently,all-polymer solar cells(all-PSCs)have become an important organic photovoltaic technology,ascribing to their unique characteristics of high stability and mechanical endurance.However,the morphology control between polymer donor and polymer acceptor suffers from tough difficulties,resulting from the nature of rigid planarity and chain entanglement in the conjugated polymer backbones.In this work,we utilize an additive,1-chloro-naphthalene(CN),to regulate polymer chain stacking and orientation in D18:PY-IT system,resulting in the formation of versatile nano-scale polymer fibrillization between donor and acceptor phases.Consequently,the CN-modified D18:PY-IT blend film shows improved molecular stacking characteristics and distinct nano-scale bi-continuous phase separation.Attributing to the incorporation of CN additive in a bulk-heterojunction(BHJ)D18:PY-IT system,it exhibits higher photovoltaic performance than the as-cast and only thermal annealing(TA)treated devices,where the CN-based device provides a power conversion efficiency(PCE)of 17.31%,an open-circuit voltage(VOC)of 0.955 V,a short-circuit current density(JSC)of 24.16 mA·cm^(-2),and a fill factor(FF)of 74.99%,respectively.This is one of the highest photovoltaic performances reported in the D18:PY-IT based binary BHJ all-PSCs.Hence,it is evident that the morphology in all-PSCs can be feasibly modulated via incorporating appropriate additive into active layer for achieving excellent photovoltaic performance. 展开更多
关键词 fibrillization engineering morphology control additive 1-chloro-naphthalene all-polymer solar cells
原文传递
Advances in anode interfacial materials for organic solar cells
6
作者 menglan lv Junhua Huang +6 位作者 Xuanyan Luo Shan Yu Xu Wang Zhuo Wang Fei Pan Bin Zhang Liming Ding 《Aggregate》 EI CAS 2024年第4期74-95,共22页
Organic solar cells(OSCs)have attracted much interest in the past few decades because of their advantages,such as being lightweight,low cost,simple preparation process,and environmental friendliness.While researchers ... Organic solar cells(OSCs)have attracted much interest in the past few decades because of their advantages,such as being lightweight,low cost,simple preparation process,and environmental friendliness.While researchers have made significant progress on the active layer materials of OSCs,the interface engineering is another entry point for upgrading the photovoltaic performance of OSCs.Significantly,the interface modification materials,including anode interfacial materials and cathode interfacial materials,are two essential parts of interfacial layers for OSCs,in which the excellent interfacial materials can realize the very high-performance photovoltaic cells.Among these interfacial materials,the anode interfacial layers(AILs)play a crucial role in improving photovoltaic performance.This review expresses a detailed conclusion of the development of anode interfacial materials and an outlook on future trends for OSCs. 展开更多
关键词 anode interfacial materials organic solar cells power conversion efficiency
在线阅读 下载PDF
有机太阳电池关键材料研究进展 被引量:2
7
作者 童杨 肖作 +24 位作者 杜晓艳 左传天 李跃龙 吕梦岚 袁永波 易陈谊 郝锋 华雍 雷霆 林乾乾 孙宽 赵德威 段春晖 邵向锋 李伟 叶轩立 肖正国 张斌 边庆真 程远航 刘升建 程明 靳志文 杨上峰 丁黎明 《中国科学:化学》 CAS CSCD 北大核心 2020年第4期437-446,共10页
有机太阳电池具有质量轻、柔性、印刷制备等优点,有巨大的应用潜力,从其诞生那一刻起便引起了学术界和工业界的广泛研究兴趣.历经25年的发展,有机太阳电池效率已突破18%,其快速进步得益于不断涌现的高性能新材料和器件制备技术,以及对... 有机太阳电池具有质量轻、柔性、印刷制备等优点,有巨大的应用潜力,从其诞生那一刻起便引起了学术界和工业界的广泛研究兴趣.历经25年的发展,有机太阳电池效率已突破18%,其快速进步得益于不断涌现的高性能新材料和器件制备技术,以及对电池活性层形貌、分子堆积和器件机理的深入理解.基于有机共轭结构的电子给体和电子受体材料是决定有机太阳电池性能的关键材料.本文将以给、受体材料的发展历程为主线,聚焦那些明星材料和里程碑工作,阐述高性能关键材料的分子结构演变和进化过程,最后展望其面临的挑战和未来发展方向. 展开更多
关键词 有机太阳电池 关键材料 D-A共聚物给体 富勒烯受体 非富勒烯受体
原文传递
Progress of the key materials for organic solar cells 被引量:22
8
作者 Yang Tong Zuo Xiao +24 位作者 Xiaoyan Du Chuantian Zuo Yuelong Li menglan lv Yongbo Yuan Chenyi Yi Feng Hao Yong Hua Ting Lei Qianqian Lin Kuan Sun Dewei Zhao Chunhui Duan Xiangfeng Shao Wei Li Hin-Lap Yip Zhengguo Xiaol Bin Zhang Qingzhen Bian Yuanhang Cheng Shengjian Liu Ming Cheng Zhiwen Jin Shangfeng Yang Liming Ding 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第6期758-765,共8页
Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the sta... Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,18%power conversion efficiency has been achieved in the state-of-the-art organic solar cells.The recent rapid progress in organic solar cells relies on the continuously emerging new materials and device fabrication technologies,and the deep understanding on film morphology,molecular packing and device physics.Donor and acceptor materials are the key materials for organic solar cells since they determine the device performance.The past 25 years have witnessed an odyssey in developing high-performance donors and acceptors.In this review,we focus on those star materials and milestone work,and introduce the molecular structure evolution of key materials.These key materials include homopolymer donors,D-A copolymer donors,A-D-A small molecular donors,fullerene acceptors and nonfullerene acceptors.At last,we outlook the challenges and very important directions in key materials development. 展开更多
关键词 organic solar cells key materials D-A copolymer donors fullerene acceptors nonfullerene acceptors
原文传递
3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells 被引量:8
9
作者 Fei Pan Song Bai +5 位作者 Xian Wei Yingfen Li Dianyong Tang Xiwen Chen menglan lv Yongfang Li 《Science China Materials》 SCIE EI CSCD 2021年第2期277-287,共11页
Graphene dispersions in low-boiling-point green solvents have wide applications in coatings,conducting inks,batteries,electronics and solar cells.Two three-dimensional(3D)cathode interfacial materials(CIMs)(1,3,5,7,9,... Graphene dispersions in low-boiling-point green solvents have wide applications in coatings,conducting inks,batteries,electronics and solar cells.Two three-dimensional(3D)cathode interfacial materials(CIMs)(1,3,5,7,9,11,13,15-octa-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-vinylpentacyclo-octasiloxane)(POSSFN)and(1,3,5,7-tetra-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-adamantane)(ADMAFN)are excellent surfactants for dispersing graphene in ethanol at the concentration of 0.97–1.18 mg mL−1,in agreement with their calculated large adsorption energies on graphene.The results of electron spin resonance,Raman,scanning Kelvin probe microscopy and X-ray photoelectron spectroscopy measurements indicate that the amino groups could n-dope graphene or form dipole interaction with graphene.The two 3D-surfactant-based graphene composites(POSSFN-G and ADMAFN-G)can work as high-performance CIMs in organic solar cells(OSCs),which improve the power conversion efficiency(PCE)of the OSCs based on PM6:Y6 to 15.9%–16.1%.ADMAFN forms dipole interaction with graphene in ADMAFN-G and the composite CIM delivers high PCE of 16.11%in the OSCs,while POSSFN forms n-doped composition with graphene in POSSFN-G which works well as thicker CIM film in the OSCs. 展开更多
关键词 organic solar cells INTERFACES 3D cathode interfacial materials graphene composites
原文传递
Single-wall carbon nanotube-containing cathode interfacial materials for high performance organic solar cells 被引量:4
10
作者 Fei Pan Song Bai +5 位作者 Tianhao Liu Dianyong Tang Xian Wei Xiwen Chen menglan lv Yongfang Li 《Science China Chemistry》 SCIE EI CAS CSCD 2021年第4期565-575,共11页
Water/alcohol soluble cathode interfacial materials(CIMs)are playing important roles in optoelectronic devices such as organic light emitting diodes,perovskite solar cells and organic solar cells(OSCs).Herein,n-doped ... Water/alcohol soluble cathode interfacial materials(CIMs)are playing important roles in optoelectronic devices such as organic light emitting diodes,perovskite solar cells and organic solar cells(OSCs).Herein,n-doped solution-processable single-wall carbon nanotubes(SWCNTs)-containing CIMs for OSCs are developed by dispersing SWCNTs to the typical CIMs perylene diimide(PDI)derivatives PDIN and PDINO.The Raman and X-ray photoelectron spectroscopy(XPS)measurement results illustrate the ndoped behavior of SWCNTs by PDIN/PDINO in the blend CIMs.The blended and n-doped SWCNTs can tune the work function and enhance the conductivity of the PDI-derivative/SWCNT(PDI-CNT)composite CIMs,and the composite CIMs can regulate and down-shift the work function of cathode,reduce the charge recombination,improve the charge extraction rate and enhance photovoltaic performance of the OSCs.High power conversion efficiency(PCE)of 17.1%and 17.7%are obtained for the OSCs based on PM6:Y6 and ternary PM6:Y6:PC_(71) BM respectively with the PDI-CNTcomposites CIMs.These results indicate that the ndoped SWCNT-containing composites,like other n-doped nanomaterials such as zero dimensional fullerenes and two dimensional graphenes,are excellent CIMs for OSCs and could find potential applications in other optoelectronic devices. 展开更多
关键词 organic solar cells cathode interfacial materials n-doped single wall carbon nanotubes silver electrode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部