Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges ...Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases.展开更多
Plant diseases have become a challenging threat in the agricultural field.Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early.Howeve...Plant diseases have become a challenging threat in the agricultural field.Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early.However,deep learning entails extensive data for training,and it may be challenging to collect plant datasets.Even though plant datasets can be collected,they may be uneven in quantity.As a result,the problem of classification model overfitting arises.This study targets this issue and proposes an auxiliary classifier GAN(small-ACGAN)model based on a small number of datasets to extend the available data.First,after comparing various attention mechanisms,this paper chose to add the lightweight Coordinate Attention(CA)to the generator module of Auxiliary Classifier GANs(ACGAN)to improve the image quality.Then,a gradient penalty mechanism was added to the loss function to improve the training stability of the model.Experiments show that the proposed method can best improve the recognition accuracy of the classifier with the doubled dataset.On AlexNet,the accuracy was increased by 11.2%.In addition,small-ACGAN outperformed the other three GANs used in the experiment.Moreover,the experimental accuracy,precision,recall,and F1 scores of the five convolutional neural network(CNN)classifiers on the enhanced dataset improved by an average of 3.74%,3.48%,3.74%,and 3.80%compared to the original dataset.Furthermore,the accuracy of MobileNetV3 reached 97.9%,which fully demonstrated the feasibility of this approach.The general experimental results indicate that the method proposed in this paper provides a new dataset expansion method for effectively improving the identification accuracy and can play an essential role in expanding the dataset of the sparse number of plant diseases.展开更多
文摘Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases.
文摘Plant diseases have become a challenging threat in the agricultural field.Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early.However,deep learning entails extensive data for training,and it may be challenging to collect plant datasets.Even though plant datasets can be collected,they may be uneven in quantity.As a result,the problem of classification model overfitting arises.This study targets this issue and proposes an auxiliary classifier GAN(small-ACGAN)model based on a small number of datasets to extend the available data.First,after comparing various attention mechanisms,this paper chose to add the lightweight Coordinate Attention(CA)to the generator module of Auxiliary Classifier GANs(ACGAN)to improve the image quality.Then,a gradient penalty mechanism was added to the loss function to improve the training stability of the model.Experiments show that the proposed method can best improve the recognition accuracy of the classifier with the doubled dataset.On AlexNet,the accuracy was increased by 11.2%.In addition,small-ACGAN outperformed the other three GANs used in the experiment.Moreover,the experimental accuracy,precision,recall,and F1 scores of the five convolutional neural network(CNN)classifiers on the enhanced dataset improved by an average of 3.74%,3.48%,3.74%,and 3.80%compared to the original dataset.Furthermore,the accuracy of MobileNetV3 reached 97.9%,which fully demonstrated the feasibility of this approach.The general experimental results indicate that the method proposed in this paper provides a new dataset expansion method for effectively improving the identification accuracy and can play an essential role in expanding the dataset of the sparse number of plant diseases.