期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Metagenomic insights into microbial diversity and carbon cycling-related genes along an elevational gradient in arid mountain ecosystems
1
作者 Zhihao ZHANG Guangxing ZHAO +3 位作者 mengfei cong Akash TARIQ Yan LU Fanjiang ZENG 《Pedosphere》 2025年第3期534-548,共15页
Understanding the elevational patterns of soil microbial carbon(C)metabolic potentials is instrumental for predicting changes in soil organic C(SOC)stocks in the face of climate change.However,such patterns remain unc... Understanding the elevational patterns of soil microbial carbon(C)metabolic potentials is instrumental for predicting changes in soil organic C(SOC)stocks in the face of climate change.However,such patterns remain uncertain in arid mountain ecosystems,where climosequences are quite different from other ecosystems.To address this gap,this study investigated the distribution determinants of microbial communities,C cycling-related genes,and SOC fractions along an elevational gradient(1707–3548 m),with a mean annual precipitation(MAP)range of 38 to 344 mm,on the north slope of the central part of the Kunlun Mountains,China using a metagenomic approach.The results showed that elevation significantly influenced the α-diversity(Shannon index)and composition of microbial communities as well as the C cycling-related genes.The α-diversities of microbial taxa and C cycling-related genes linearly increased with the increase in MAP along the elevational gradient.The elevational patterns of the genes encoding glycoside hydrolases and glycosyl transferases(GTs)were mainly driven by soil electrical conductivity(EC),mean annual temperature(MAT),MAP,and plant diversity.Furthermore,mineral-associated organic C(MAOC),particulate organic C(POC),and their sum generally increased with elevation.However,the MAOC/POC ratio followed a unimodal pattern,suggesting greater stability of the SOC pool in the mid-elevation regions.This unimodal pattern was likely influenced by the abundances of Actinobacteria and the genes encoding GTs and carbohydrate esterases and the threshold effects of soil EC and MAT.In summary,our findings indicate that the distribution patterns of microbial communities and C cycling-related genes along the elevational gradient in an arid ecosystem are distinct from those in the regions with higher MAP,facilitating the prediction of climate change effects on SOC metabolism under more arid conditions.Soil salinity,plant diversity,precipitation,and temperature are the main regulatory factors of microbial C metabolism processes,and they potentially play a central role in mediating SOC pool stability. 展开更多
关键词 climate change elevational pattern microbial carbon metabolism microbial community soil organic carbon
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部