Rapid and accurate detection of immunoglobulin E(Ig E) in serum and reduction of serum dosage are of great significance for clinical detection. Herein, we described a rapid magnetic separation of Ig E from patient ser...Rapid and accurate detection of immunoglobulin E(Ig E) in serum and reduction of serum dosage are of great significance for clinical detection. Herein, we described a rapid magnetic separation of Ig E from patient serum based on Fe3 O4@Si O2-NTA@026 sdab as the capture probe and multiple horseradish peroxidase(HRP)-labeled antibodies linked gold nanoparticles(Au NPs) as chemiluminescence(CL) signal amplifier for ultrasensitive detection of total Ig E. Results showed that the limit of detection of our immunosensor system in serum samples was 0.03 k U/L, which is lowest in comparison with current methods, and far lower than that of Immuno CAP for Ig E detection(0.1 k U/L). Furthermore, our immunosensor possessed satisfied repeatability and accuracy, as well as good stability. In comparison with the Immuno CAP for the quantitative detection of Ig E, highly consistent results were achieved in 20 serum samples. Specially, this method was also successfully utilized for assessing the Ig E traces in breast cancer patients,which provides a new idea for the diagnosis of early cancer. Therefore, we believe that such versatile immunosensor will offer an alternative method for the on-site monitoring and determination of various Ig E-related diseases.展开更多
基金supported by the National Key Research and Development Project (No.2020YFA0709900)the National Natural Science Foundation of China (Nos.81871265,81672508,81702617)+4 种基金Key University Science Research Project of Jiangsu Province (No.19KJA520005)Natural Science Basic Research Program of Shaanxi Province (No.2019JM-016)National Natural Science Foundation of Jiangxi Province (No.20202BABL206043)Science and Technology Project of Jiangxi Provincial Health Commission (No.20204495)Open Research Fund of Anhui Key Laboratory of Tobacco。
文摘Rapid and accurate detection of immunoglobulin E(Ig E) in serum and reduction of serum dosage are of great significance for clinical detection. Herein, we described a rapid magnetic separation of Ig E from patient serum based on Fe3 O4@Si O2-NTA@026 sdab as the capture probe and multiple horseradish peroxidase(HRP)-labeled antibodies linked gold nanoparticles(Au NPs) as chemiluminescence(CL) signal amplifier for ultrasensitive detection of total Ig E. Results showed that the limit of detection of our immunosensor system in serum samples was 0.03 k U/L, which is lowest in comparison with current methods, and far lower than that of Immuno CAP for Ig E detection(0.1 k U/L). Furthermore, our immunosensor possessed satisfied repeatability and accuracy, as well as good stability. In comparison with the Immuno CAP for the quantitative detection of Ig E, highly consistent results were achieved in 20 serum samples. Specially, this method was also successfully utilized for assessing the Ig E traces in breast cancer patients,which provides a new idea for the diagnosis of early cancer. Therefore, we believe that such versatile immunosensor will offer an alternative method for the on-site monitoring and determination of various Ig E-related diseases.