Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmo...Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.展开更多
The low-efficiency CO_(2) uptake capacity and insufficient photogenerated exciton dissociation of current metal halide perovskite(MHP)nanocrystals with end-capping ligands extremely restrict their application in the f...The low-efficiency CO_(2) uptake capacity and insufficient photogenerated exciton dissociation of current metal halide perovskite(MHP)nanocrystals with end-capping ligands extremely restrict their application in the field of artificial photosynthesis.Herein,we demonstrate that ligand-free CsPbBr_(3) with calliandralike nanostructure(LF-CPB CL)can be synthesized easily through a ligand-free seed-assisted dissolutionrecrystallization growth process,exhibiting significantly enhanced CO_(2) uptake capacity.More specifically,the abundant surface bromine(Br)vacancies in ligand-free MHP materials are demonstrated to be beneficial to photogenerated carrier separation.The electron consumption rate of LF-CPB CL for photocatalytic CO_(2) reduction increases 7 and 20 times over those of traditional ligand-capping CsPbBr_(3)nanocrystal(L-CPB NC)and bulk CsPbBr_(3),respectively.Moreover,the absence of ligand hindrance can facilitate the interfacial electronic coupling between LF-CPB CL and tetra(4-carboxyphenyl)porphyrin iron(Ⅲ)chloride(Fe-TCPP)cocatalyst,bringing forth significantly accelerated interfacial charge separation.The LF-CPB CL/Fe-TCPP exhibits a total electron consumption rate of 145.6μmol g^(-1) h^(-1) for CO_(2)photoreduction coupled with water oxidation which is over 14 times higher than that of L-CPB NC/FeTCPP.展开更多
Excellent optical properties involving strong visible light response and superior carrier transport endow metal halide perovskites(MHP)with a fascinating prospect in the field of photocatalysis.Nevertheless,the poor s...Excellent optical properties involving strong visible light response and superior carrier transport endow metal halide perovskites(MHP)with a fascinating prospect in the field of photocatalysis.Nevertheless,the poor stability of MHP nanocrystals(NCs)in water-contained system,especially without the protection of long alkyl chain ligands,severely restricts their photocatalytic performance.In this context,we report an effortless strategy for the generation of ligand-free MHP NCs based photocatalyst with high water tolerance,by coating PbI_(2)on the surface of ligand-free formamidinium lead bromide(FAPb Br_(3))NCs via the facile procedure of in-situ conversion with the aid of ZnI_(2).Under the protection of PbI_(2)layer,the resultant FAPb Br_(3)/PbI_(2)composite exhibits significantly ameliorated stability in an artificial photosynthesis system with CO_(2)and H_(2)O vapor as feedstocks.Moreover,the formation of compact PbI_(2)layer can accelerate the separation of photogenerated carriers in FAPbBr_(3)NCs,bringing forth a remarkable improvement of CO_(2)photoreduction efficiency with an impressive electron consumption yield of 2053μmol/g in the absence of organic sacrificial agents,which is 7-fold over that of pristine FAPb Br_(3)NCs.展开更多
Achieving efficient and highly selective conversion of CH_(4)into high-value-added chemicals through photodriving under mild conditions remains a significant challenge,primarily due to the limited utilization efficien...Achieving efficient and highly selective conversion of CH_(4)into high-value-added chemicals through photodriving under mild conditions remains a significant challenge,primarily due to the limited utilization efficiency of photogenerated carriers.Herein,we report an in-situ growth strategy for constructing a robust InVO_(4)-based heterojunction by intermarrying InVO_(4)and BiVO_(4)through cation-exchange.This method enables the resultant InVO_(4)/BiVO_(4)heterojunction to possess strong interfacial electronic coupling,which accelerates the interface charge transfer and significantly enhances the separation efficiency of photogenerated carriers.Under visible light-driven reaction conditions at ambient temperature and pressure,the InVO_(4)/BiVO_(4)heterojunction demonstrates high selectivity(>90%)in photocatalyzing the oxidation of CH_(4)to high-value oxygenated hydrocarbons(CH_(3)OH and HCHO),with a yield of 318.9μmol g^(-1)h^(-1),which is 4.8 times higher than that of pristine BiVO_(4).Comprehensive control and isotope tracing experiments,as well as in-situ detection of transient species reveal that the key intermediate product CH_(3)OOH is primarily formed through the binding of·CH_(3)radicals with protons and O_(2),explaining why the oxygen source of the CH_(3)OH product is mainly derived from O_(2).展开更多
Developing highly efficient heterostructural photocatalysts for direct CO_(2)reduction coupled with water oxidation remains challenging,the key to which is to establish an efficient interfacial charge transport channe...Developing highly efficient heterostructural photocatalysts for direct CO_(2)reduction coupled with water oxidation remains challenging,the key to which is to establish an efficient interfacial charge transport channel.Herein,we present a Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)Z-scheme heterojunction prepared with an in-situ growth method based on the Sb atomic pinning effect.As revealed by the analysis of experimental and theoretical calculation results,the introduction of Sb anchors on C_(3)N_(4)leads to the formation of an Sb–N charge transfer bridge between Cs_(3)Sb_(2)Br_(9)and C_(3)N_(4),promoting interfacial charge communication over Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)heterojunction.Moreover,it can induce the heterojunction interfacial charge transfer pathway between Cs_(3)Sb_(2)Br_(9)and C_(3)N_(4)to change from type II to the type Z-scheme,enabling the change of the catalytic site from C_(3)N_(4)to Cs_(3)Sb_(2)Br_(9),thus promoting the CO_(2)activation.As a result,Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)achieves efficient CO_(2)to CO photocatalytic conversion using water as the electron source under simulated solar light irradiation(100 mW·cm^(−2)),with the yield of 198.4μmol·g^(−1)·h^(−1),which is nearly 3-fold and 9-fold over the counterpart synthesized catalyst without Sb anchors(Cs_(3)Sb_(2)Br_(9)/g–C_(3)N_(4))and pure g–C_(3)N_(4),respectively.This work provides a new alternative solution for the design of highly efficient heterojunction photocatalysts.展开更多
基金supported by grants from CAMS Innovation Fund for Medical Sciences(Grant No.:2021-I2M-1-026)Scientific Research Project of Tianjin Education Commission(Grant No.:2020KJ140)Tianjin Health Research Project(Grant No.:KJ20017)。
文摘Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.
基金financially supported by the Natural Science Foundation of Tianjin City(17JCJQJC43800)the National Key R&D Program of China(2017YFA0700104)+1 种基金the National Science Foundation of China(21931007,U21A20286)Jiangsu Funding Program for Excellent Postdoctoral Talent and the 111 Project of China(D17003)。
文摘The low-efficiency CO_(2) uptake capacity and insufficient photogenerated exciton dissociation of current metal halide perovskite(MHP)nanocrystals with end-capping ligands extremely restrict their application in the field of artificial photosynthesis.Herein,we demonstrate that ligand-free CsPbBr_(3) with calliandralike nanostructure(LF-CPB CL)can be synthesized easily through a ligand-free seed-assisted dissolutionrecrystallization growth process,exhibiting significantly enhanced CO_(2) uptake capacity.More specifically,the abundant surface bromine(Br)vacancies in ligand-free MHP materials are demonstrated to be beneficial to photogenerated carrier separation.The electron consumption rate of LF-CPB CL for photocatalytic CO_(2) reduction increases 7 and 20 times over those of traditional ligand-capping CsPbBr_(3)nanocrystal(L-CPB NC)and bulk CsPbBr_(3),respectively.Moreover,the absence of ligand hindrance can facilitate the interfacial electronic coupling between LF-CPB CL and tetra(4-carboxyphenyl)porphyrin iron(Ⅲ)chloride(Fe-TCPP)cocatalyst,bringing forth significantly accelerated interfacial charge separation.The LF-CPB CL/Fe-TCPP exhibits a total electron consumption rate of 145.6μmol g^(-1) h^(-1) for CO_(2)photoreduction coupled with water oxidation which is over 14 times higher than that of L-CPB NC/FeTCPP.
基金the Natural Science Foundation of Tianjin City(No.17JCJQJC43800)。
文摘Excellent optical properties involving strong visible light response and superior carrier transport endow metal halide perovskites(MHP)with a fascinating prospect in the field of photocatalysis.Nevertheless,the poor stability of MHP nanocrystals(NCs)in water-contained system,especially without the protection of long alkyl chain ligands,severely restricts their photocatalytic performance.In this context,we report an effortless strategy for the generation of ligand-free MHP NCs based photocatalyst with high water tolerance,by coating PbI_(2)on the surface of ligand-free formamidinium lead bromide(FAPb Br_(3))NCs via the facile procedure of in-situ conversion with the aid of ZnI_(2).Under the protection of PbI_(2)layer,the resultant FAPb Br_(3)/PbI_(2)composite exhibits significantly ameliorated stability in an artificial photosynthesis system with CO_(2)and H_(2)O vapor as feedstocks.Moreover,the formation of compact PbI_(2)layer can accelerate the separation of photogenerated carriers in FAPbBr_(3)NCs,bringing forth a remarkable improvement of CO_(2)photoreduction efficiency with an impressive electron consumption yield of 2053μmol/g in the absence of organic sacrificial agents,which is 7-fold over that of pristine FAPb Br_(3)NCs.
基金supported by the National Key R&D Program of China(2022YFA1502902)the National Natural Science Foundation of China(22475152,U21A20286)the 111 Project of China(D17003)。
文摘Achieving efficient and highly selective conversion of CH_(4)into high-value-added chemicals through photodriving under mild conditions remains a significant challenge,primarily due to the limited utilization efficiency of photogenerated carriers.Herein,we report an in-situ growth strategy for constructing a robust InVO_(4)-based heterojunction by intermarrying InVO_(4)and BiVO_(4)through cation-exchange.This method enables the resultant InVO_(4)/BiVO_(4)heterojunction to possess strong interfacial electronic coupling,which accelerates the interface charge transfer and significantly enhances the separation efficiency of photogenerated carriers.Under visible light-driven reaction conditions at ambient temperature and pressure,the InVO_(4)/BiVO_(4)heterojunction demonstrates high selectivity(>90%)in photocatalyzing the oxidation of CH_(4)to high-value oxygenated hydrocarbons(CH_(3)OH and HCHO),with a yield of 318.9μmol g^(-1)h^(-1),which is 4.8 times higher than that of pristine BiVO_(4).Comprehensive control and isotope tracing experiments,as well as in-situ detection of transient species reveal that the key intermediate product CH_(3)OOH is primarily formed through the binding of·CH_(3)radicals with protons and O_(2),explaining why the oxygen source of the CH_(3)OH product is mainly derived from O_(2).
基金financially supported by the National Key R&D Program of China(2022YFA1502902)the National Natural Science Foundation of China(U21A20286 and 22305214)+2 种基金the Natural Science Foundation of Tianjin City(17JCJQJC43800)the 111 Project of Chinathe Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB616)。
文摘Developing highly efficient heterostructural photocatalysts for direct CO_(2)reduction coupled with water oxidation remains challenging,the key to which is to establish an efficient interfacial charge transport channel.Herein,we present a Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)Z-scheme heterojunction prepared with an in-situ growth method based on the Sb atomic pinning effect.As revealed by the analysis of experimental and theoretical calculation results,the introduction of Sb anchors on C_(3)N_(4)leads to the formation of an Sb–N charge transfer bridge between Cs_(3)Sb_(2)Br_(9)and C_(3)N_(4),promoting interfacial charge communication over Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)heterojunction.Moreover,it can induce the heterojunction interfacial charge transfer pathway between Cs_(3)Sb_(2)Br_(9)and C_(3)N_(4)to change from type II to the type Z-scheme,enabling the change of the catalytic site from C_(3)N_(4)to Cs_(3)Sb_(2)Br_(9),thus promoting the CO_(2)activation.As a result,Cs_(3)Sb_(2)Br_(9)/Sb–C_(3)N_(4)achieves efficient CO_(2)to CO photocatalytic conversion using water as the electron source under simulated solar light irradiation(100 mW·cm^(−2)),with the yield of 198.4μmol·g^(−1)·h^(−1),which is nearly 3-fold and 9-fold over the counterpart synthesized catalyst without Sb anchors(Cs_(3)Sb_(2)Br_(9)/g–C_(3)N_(4))and pure g–C_(3)N_(4),respectively.This work provides a new alternative solution for the design of highly efficient heterojunction photocatalysts.