期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enabling Extraordinary Rate Performance for Poorly Conductive Oxide Pseudocapacitors 被引量:1
1
作者 Mozaffar Abdollahifar Hao-Wen Liu +6 位作者 Chia-Hsin Lin Yu-Ting Weng Hwo-Shuenn Sheu Jyh-Fu Lee meng-lin lu Yen-Fa Liao Nae-Lih Wu 《Energy & Environmental Materials》 2020年第3期405-413,共9页
Pseudocapacitive transition metal oxides(PTMOs)have the advantages of high areal capacitance and material density suitable for high-energy supercapacitor devices,but they are typically marred by insufficient rate perf... Pseudocapacitive transition metal oxides(PTMOs)have the advantages of high areal capacitance and material density suitable for high-energy supercapacitor devices,but they are typically marred by insufficient rate performance,which in turn deteriorates cyclic stability at high current levels.Using the example of spinel manganese oxide,herein we demonstrate that a pseudocapacitive oxide electrode of remarkable rate performance and cyclic stability may be realized by adopting oxide nanocrystallites,which are derived based on a novel solution chemistry,and carbon additive(CA)nanoparticles with highly uniform of size distributions.Precisely controlling the particle morphology and size distribution of the active material and conductive additive(CA)in the nanometer range can maximize the density of active material-CA-electrolyte three-phase contact points,thus facilitating synchronized electron and cation flow for the completion of surface faradaic reactions.The resultant Mn3O4 pseudocapacitive electrode exhibits rate capability and cycle stability,including 60%capacity retention at 60 A g-1 and no capacity fade over 100000 cycles under dynamic current densities,far superior to the state-of-the-art PTMO electrodes.The electrode design strategy is in general applicable to pseudocapacitors containing poorly conductive active materials. 展开更多
关键词 high-rate performance pseudocapacitor electrodes single nanoparticles three-phase contact point ultra-long cycle life
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部