Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined sp...Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.展开更多
With the globalization of the economy,maritime trade has surged,posing challenges in the supervision of marine vessel activities.An automatic identification system(AIS)is an effective means of shipping traffic service...With the globalization of the economy,maritime trade has surged,posing challenges in the supervision of marine vessel activities.An automatic identification system(AIS)is an effective means of shipping traffic service,but many uncertainties exist regarding its data quality.In this study,the AIS data from Haiyang(HY)series of satellites were used to assess the data quality,analyze the global ship trajectory distribution and update frequencies from 2019 to 2023.Through the analysis of maritime mobile service identity numbers,we identified 340185 unique vessels,80.1%of which adhered to the International Telecommunication Union standards.Approximately 49.7%of ships exhibit significant data gaps,and 1.1%show inconsistencies in their AIS data sources.In the central Pacific Ocean at low latitudes and along the coast of South America(30°-60°S),a heightened incidence of abnormal trajectories of ships has been consistently observed,particularly in areas associated with fishing activities.According to the spatial distribution of ship trajectories,AIS data exhibit numerous deficiencies,particularly in high-traffic regions such as the East China Sea and South China Sea.In contrast,ship trajectories in the polar regions,characterized by high latitudes,are relatively comprehensive.With the increased number of HY satellites equipped with AIS receivers,the quantity of trajectory points displays a growing trend,leading to increasingly complete trajectories.This trend highlights the significant potential of using AIS data acquired from HY satellites to increase the accuracy of vessel tracking.展开更多
In recent years,incidents of simultaneous exceedance of PM_(2.5)and O_(3) concentrations,termed PM_(2.5)and O_(3) co-pollution events,have frequently occurred in China.This study conducted atmospheric circulation anal...In recent years,incidents of simultaneous exceedance of PM_(2.5)and O_(3) concentrations,termed PM_(2.5)and O_(3) co-pollution events,have frequently occurred in China.This study conducted atmospheric circulation analysis on two typical co-pollution events in Beijing,occurring from July 22 to July 28,2019,and from April 25 to May 2,2020.These events were categorized into pre-trough southerly airflow type(Type 1)and post-trough northwest flow type(Type 2).Subsequently,sensitivity analyses using the GRAPES-CUACE adjoint model were performed to quantify the contributions of precursor emissions from Beijing and surrounding areas to PM_(2.5)and O_(3) concentrations in Beijing for two types of co-pollution.The results indicated that the spatiotemporal distribution of sensitive source region varied among different circulation types.Primary PM_(2.5)(PPM_(2.5))emissions from Hebei contributed the most to the 24-hour average PM_(2.5)(24-h PM_(2.5))peak concentration(41.6%-45.4%),followed by Beijing emissions(31%-35.7%).The maximum daily 8-hour average ozone peak concentration was primarily influenced by the emissions from Hebei and Beijing,with contribution ratios respectively of 32.8%-44.8% and 29%-42.1%.Additionally,NO_(x)emissions were the main contributors in Type 1,while both NO_(x)and VOCs emissions contributed similarly in Type 2.The iterative emission reduction experiments for two types of co-pollution indicated that Type 1 required emission reductions in NO_(x)(52.4%-71.8%)and VOCs(14.1%-33.8%)only.In contrast,Type 2 required combined emission reductions in NO_(x)(37.0%-65.1%),VOCs(30.7%-56.2%),and PPM_(2.5)(31%-46.9%).This study provided a reference for controlling co-pollution events and improving air quality in Beijing.展开更多
基金supported by the National Key Research and Development Program of China(No.2024YFB3212901)National Natural Science Foundation of China(12072189)the Medicine and Engineering Interdisciplinary Research Fund of Shanghai Jiao Tong University(No.YG2025ZD05)。
文摘Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.
基金The National Key R&D Program of China under contract Nos 2021YFC2803305 and 2024YFC2816301the Fundamental Research Funds for the Central Universities of China under contract No.2042022dx0001.
文摘With the globalization of the economy,maritime trade has surged,posing challenges in the supervision of marine vessel activities.An automatic identification system(AIS)is an effective means of shipping traffic service,but many uncertainties exist regarding its data quality.In this study,the AIS data from Haiyang(HY)series of satellites were used to assess the data quality,analyze the global ship trajectory distribution and update frequencies from 2019 to 2023.Through the analysis of maritime mobile service identity numbers,we identified 340185 unique vessels,80.1%of which adhered to the International Telecommunication Union standards.Approximately 49.7%of ships exhibit significant data gaps,and 1.1%show inconsistencies in their AIS data sources.In the central Pacific Ocean at low latitudes and along the coast of South America(30°-60°S),a heightened incidence of abnormal trajectories of ships has been consistently observed,particularly in areas associated with fishing activities.According to the spatial distribution of ship trajectories,AIS data exhibit numerous deficiencies,particularly in high-traffic regions such as the East China Sea and South China Sea.In contrast,ship trajectories in the polar regions,characterized by high latitudes,are relatively comprehensive.With the increased number of HY satellites equipped with AIS receivers,the quantity of trajectory points displays a growing trend,leading to increasingly complete trajectories.This trend highlights the significant potential of using AIS data acquired from HY satellites to increase the accuracy of vessel tracking.
基金supported by the National Key Research and Development Program of China(No.2022YFC3701205)the National Natural Science Foundation of China(No.41975173)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(No.2021KJ011)。
文摘In recent years,incidents of simultaneous exceedance of PM_(2.5)and O_(3) concentrations,termed PM_(2.5)and O_(3) co-pollution events,have frequently occurred in China.This study conducted atmospheric circulation analysis on two typical co-pollution events in Beijing,occurring from July 22 to July 28,2019,and from April 25 to May 2,2020.These events were categorized into pre-trough southerly airflow type(Type 1)and post-trough northwest flow type(Type 2).Subsequently,sensitivity analyses using the GRAPES-CUACE adjoint model were performed to quantify the contributions of precursor emissions from Beijing and surrounding areas to PM_(2.5)and O_(3) concentrations in Beijing for two types of co-pollution.The results indicated that the spatiotemporal distribution of sensitive source region varied among different circulation types.Primary PM_(2.5)(PPM_(2.5))emissions from Hebei contributed the most to the 24-hour average PM_(2.5)(24-h PM_(2.5))peak concentration(41.6%-45.4%),followed by Beijing emissions(31%-35.7%).The maximum daily 8-hour average ozone peak concentration was primarily influenced by the emissions from Hebei and Beijing,with contribution ratios respectively of 32.8%-44.8% and 29%-42.1%.Additionally,NO_(x)emissions were the main contributors in Type 1,while both NO_(x)and VOCs emissions contributed similarly in Type 2.The iterative emission reduction experiments for two types of co-pollution indicated that Type 1 required emission reductions in NO_(x)(52.4%-71.8%)and VOCs(14.1%-33.8%)only.In contrast,Type 2 required combined emission reductions in NO_(x)(37.0%-65.1%),VOCs(30.7%-56.2%),and PPM_(2.5)(31%-46.9%).This study provided a reference for controlling co-pollution events and improving air quality in Beijing.