期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
提高云存储效率的并行处理策略研究 被引量:2
1
作者 周兰凤 孟驰 彭俊杰 《计算机工程与应用》 CSCD 北大核心 2017年第9期85-89,共5页
在云存储过程中,从本地发送大量文件到服务器端采用打包传输时,在接收端需要等待文件包完整接收后方可进行打包,这一过程由于打包和解包耗时较多降低了传输效率。针对这一问题,提出了一种优化传输的并行处理策略,将传输的大量文件无损... 在云存储过程中,从本地发送大量文件到服务器端采用打包传输时,在接收端需要等待文件包完整接收后方可进行打包,这一过程由于打包和解包耗时较多降低了传输效率。针对这一问题,提出了一种优化传输的并行处理策略,将传输的大量文件无损压缩后以特定的大小进行多批次打包,传输过程中接收端同时对接收之前批次的包文件进行解包,以此达到并行处理打包和解包操作,实验表明并行处理的策略有效地降低了传输时间,提高了存储效率。 展开更多
关键词 云存储 并行处理 传输效率
在线阅读 下载PDF
益气固表丸含药血清对炎症肺上皮细胞TGF-β_(2)-Smad信号通路的影响 被引量:3
2
作者 陶思冥 罗建江 +4 位作者 李争 荆晶 孟驰 张艳丽 李风森 《世界中医药》 CAS 2023年第9期1240-1245,共6页
目的:通过采用益气固表含药血清对慢性阻塞性肺疾病(COPD)炎症细胞模型进行干预,以转化生长因子-β_(2)(TGF-β_(2))-Sma和Mad相关(Smad)信号通路及相关炎症介质为切入点,揭示益气固表丸调节体内炎症水平的可能作用机制。方法:以卷烟烟... 目的:通过采用益气固表含药血清对慢性阻塞性肺疾病(COPD)炎症细胞模型进行干预,以转化生长因子-β_(2)(TGF-β_(2))-Sma和Mad相关(Smad)信号通路及相关炎症介质为切入点,揭示益气固表丸调节体内炎症水平的可能作用机制。方法:以卷烟烟雾提取物(CSE)和脂多糖(LPS)为刺激因子,以肺上皮细胞A549为载体,建立COPD炎症细胞模型。用益气固表丸对大鼠进行灌胃,2次/d,间隔12 h,给药7 d后采血,制备含药血清。用益气固表丸高、中、低剂量含药血清进行培养干预,运用实时荧光定量PCR法(RT-qPCR)和酶联免疫吸附试验(ELISA)、免疫荧光单标等检测干预前后CD4、CD8、白细胞介素-6(IL-6)、IL-17、肿瘤坏死因子-α(TNF-α)等炎症介质和TGF-β_(2)-Smad信号通路重要分子变化。结果:各给药组CD4显著高于对照组,差异有统计学意义(P<0.05);各给药组CD8、IL-6、IL-17、TNF-α、TGF-β_(2)、Smad2、Smad3表达水平低于对照组,差异有统计学意义(P<0.05)。结论:益气固表丸含药血清对炎症肺上皮细胞的抑制作用可能与调控TGF-β_(2)-Smad信号通路有关。 展开更多
关键词 慢性阻塞性肺疾病 益气固表丸 TGF-β_(2)-Smad信号通路 炎症介质 含药血清
暂未订购
Risk assessment of malignancy in solitary pulmonary nodules in lung computed tomography:a multivariable predictive model study 被引量:9
3
作者 Hai-Yang Liu Xing-Ru Zhao +7 位作者 meng chi Xiang-Song Cheng Zi-Qi Wang Zhi-Wei Xu Yong-Li Li Rui Yang Yong-Jun Wu Xiao-Ju Zhang 《Chinese Medical Journal》 SCIE CAS CSCD 2021年第14期1687-1694,共8页
Background:Computed tomography images are easy to misjudge because of their complexity,especially images of solitary pulmonary nodules,of which diagnosis as benign or malignant is extremely important in lung cancer tr... Background:Computed tomography images are easy to misjudge because of their complexity,especially images of solitary pulmonary nodules,of which diagnosis as benign or malignant is extremely important in lung cancer treatment.Therefore,there is an urgent need for a more effective strategy in lung cancer diagnosis.In our study,we aimed to externally validate and revise the Mayo model,and a new model was established.Methods:A total of 1450 patients from three centers with solitary pulmonary nodules who underwent surgery were included in the study and were divided into training,internal validation,and external validation sets(n=849,365,and 236,respectively).External verification and recalibration of the Mayo model and establishment of new logistic regression model were performed on the training set.Overall performance of each model was evaluated using area under receiver operating characteristic curve(AUC).Finally,the model validation was completed on the validation data set.Results:The AUC of the Mayo model on the training set was 0.653(95%confidence interval[CI]:0.613–0.694).After re-estimation of the coefficients of all covariates included in the original Mayo model,the revised Mayo model achieved an AUC of 0.671(95%CI:0.635–0.706).We then developed a new model that achieved a higher AUC of 0.891(95%CI:0.865–0.917).It had an AUC of 0.888(95%CI:0.842–0.934)on the internal validation set,which was significantly higher than that of the revised Mayo model(AUC:0.577,95%CI:0.509–0.646)and the Mayo model(AUC:0.609,95%CI,0.544–0.675)(P<0.001).The AUC of the new model was 0.876(95%CI:0.831–0.920)on the external verification set,which was higher than the corresponding value of the Mayo model(AUC:0.705,95%CI:0.639–0.772)and revised Mayo model(AUC:0.706,95%CI:0.640–0.772)(P<0.001).Then the prediction model was presented as a nomogram,which is easier to generalize.Conclusions:After external verification and recalibration of the Mayo model,the results show that they are not suitable for the prediction of malignant pulmonary nodules in the Chinese population.Therefore,a new model was established by a backward stepwise process.The new model was constructed to rapidly discriminate benign from malignant pulmonary nodules,which could achieve accurate diagnosis of potential patients with lung cancer. 展开更多
关键词 CT image Lung cancer Prediction model Pulmonary nodules Regression algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部