Haze is mainly caused by the suspended particulate matters in the air,of which the particulate matters pollution harms leaf vegetables.In this paper,oilseed rapes at four different growing periods were investigated in...Haze is mainly caused by the suspended particulate matters in the air,of which the particulate matters pollution harms leaf vegetables.In this paper,oilseed rapes at four different growing periods were investigated in a simulated particulate pollution environment.In combination of hyper-spectral technology and micro examination,the response of hyper-spectral characteristics of the leaf to particulate matters was investigated in-depth.The hyperspectral,chlorophyll content,net photosynthetic rate and stomatal conductance of leaf were obtained.The deposition and adsorption of particulate matters on the leaf were observed by Environmental Scanning Electron Microscope(ESEM).Normalized difference vegetation index(NDVI),modified red edge normalized(mNDVI705)and modified red edge simple ratio index(mSR705)were selected as characteristic parameters and the range of 510 nm~620 nm as the sensitive band.16 methods were used to establish the physiological information inversion model.The main results were as follows:Under the influence of particulate matters,the spectral reflectance decreased as a whole.With the increase of leaf age,the phenomenon of blue shift aggravated.The amplitude of yellow and blue edge decreased with overall decreasing vegetation indices.The furrows and irregular band protrusions in leaves were favorable for keeping particulate matters.With longer affecting time and more deposition of particle matters on the leaf,the stomatal opening became smaller.After comparing,principal component regression(PCR)+multiple scatter correction(MSC)+second derivative(SD)+Savitzky-Golay smooth(SG),and partial least square(PLS)+multiple scatter correction(MSC)+first derivative(FD)+Savitzky-Golay smooth(SG)were determined the best method to establish the inversion model of chlorophyll content and net photosynthetic rate respectively.This study may bring novel ideas for the diagnosis and analysis of the physiological response of leaf vegetables under particulate matters pollution using hyper-spectral technology.展开更多
The particle matter,particularly the suspended particle matter(PM≤2.5)in the air is not only a risk factor for human health,but also affects the survival and physiological features of plants.Plants show advantages in...The particle matter,particularly the suspended particle matter(PM≤2.5)in the air is not only a risk factor for human health,but also affects the survival and physiological features of plants.Plants show advantages in the adsorption of particle matter,while the factors,such as the leaf shape,leaf distribution density and leaf surface microstructure,such as grooves,folds,stomata,flocculent projections,micro-roughness,long fuzz,short pubescence,wax and secretory products,appeared to play an important role determing their absorption capacity.In this paper,the research progress on the capture or adsorption of atmospheric particles was summarized,and the forest vegetation and woody plants were discuessed.In addition,special attentions were paid to the effect of haze-fog weather on greenhouse plant,the different responses of plant leaves to dust particles and suspended particles,as well as the effect of suspended particles on morphological change of plants.In the future,research should focus on the mechanism of the influence of particulate matter on plants.More advanced effective and convenient research methods like spectral detection method also need to be developed.This paper may provide reference for future studies on plants’response to haze and particle matter.展开更多
基金This work was funded under the auspices of the National Natural Science Foundation for Young Scientists Fund(31801259)the National Natural Science Foundation for Young Scientists Fund(32001418)the Science and Technology Development Project of Jilin Province(20200402015NC).
文摘Haze is mainly caused by the suspended particulate matters in the air,of which the particulate matters pollution harms leaf vegetables.In this paper,oilseed rapes at four different growing periods were investigated in a simulated particulate pollution environment.In combination of hyper-spectral technology and micro examination,the response of hyper-spectral characteristics of the leaf to particulate matters was investigated in-depth.The hyperspectral,chlorophyll content,net photosynthetic rate and stomatal conductance of leaf were obtained.The deposition and adsorption of particulate matters on the leaf were observed by Environmental Scanning Electron Microscope(ESEM).Normalized difference vegetation index(NDVI),modified red edge normalized(mNDVI705)and modified red edge simple ratio index(mSR705)were selected as characteristic parameters and the range of 510 nm~620 nm as the sensitive band.16 methods were used to establish the physiological information inversion model.The main results were as follows:Under the influence of particulate matters,the spectral reflectance decreased as a whole.With the increase of leaf age,the phenomenon of blue shift aggravated.The amplitude of yellow and blue edge decreased with overall decreasing vegetation indices.The furrows and irregular band protrusions in leaves were favorable for keeping particulate matters.With longer affecting time and more deposition of particle matters on the leaf,the stomatal opening became smaller.After comparing,principal component regression(PCR)+multiple scatter correction(MSC)+second derivative(SD)+Savitzky-Golay smooth(SG),and partial least square(PLS)+multiple scatter correction(MSC)+first derivative(FD)+Savitzky-Golay smooth(SG)were determined the best method to establish the inversion model of chlorophyll content and net photosynthetic rate respectively.This study may bring novel ideas for the diagnosis and analysis of the physiological response of leaf vegetables under particulate matters pollution using hyper-spectral technology.
基金This work was funded under the auspices of the National Natural Science Foundation for Young Scientists of China(31801259)the Science and Technology Development Project of Jilin Province(20170204020NY).
文摘The particle matter,particularly the suspended particle matter(PM≤2.5)in the air is not only a risk factor for human health,but also affects the survival and physiological features of plants.Plants show advantages in the adsorption of particle matter,while the factors,such as the leaf shape,leaf distribution density and leaf surface microstructure,such as grooves,folds,stomata,flocculent projections,micro-roughness,long fuzz,short pubescence,wax and secretory products,appeared to play an important role determing their absorption capacity.In this paper,the research progress on the capture or adsorption of atmospheric particles was summarized,and the forest vegetation and woody plants were discuessed.In addition,special attentions were paid to the effect of haze-fog weather on greenhouse plant,the different responses of plant leaves to dust particles and suspended particles,as well as the effect of suspended particles on morphological change of plants.In the future,research should focus on the mechanism of the influence of particulate matter on plants.More advanced effective and convenient research methods like spectral detection method also need to be developed.This paper may provide reference for future studies on plants’response to haze and particle matter.