Achieving carbon neutrality is urgent due to the critical issue of climate change.To reach this goal,the development of new,breakthrough technologies is necessary and urgent.One such technology involves efficient carb...Achieving carbon neutrality is urgent due to the critical issue of climate change.To reach this goal,the development of new,breakthrough technologies is necessary and urgent.One such technology involves efficient carbon capture and its conversion into useful chemicals or fuels.However,achieving considerable amounts of efficiency in this field is a very challenging task.Even in natural photosynthesis occurring in plant leaves,the CO_(2)conversion efficiency into hydrocarbons cannot exceed a value of 1%.Nevertheless,recently few reports show comparable higher efficiency in CO_(2)to gaseous products such as carbon monoxide(CO),but it is hard to find selective liquid fuel products with a high value of solar to liquid fuel conversion efficiency.Herein,a NiFe-assisted hybrid composite dark cathode is employed for the selective production of solar-to-liquid fuels,in conjunction with a BiVO4 photoanode.This process results in the generation of significant amounts of formaldehyde,ethanol,and methanol selectively.The primary objective of this study is to design and optimize a novel photoelectrochemical(PEC)system to produce solar-to-liquid fuels selectively.This study shows the enhancement of the solar-to-fuel conversion efficiency over 1.5%by employing a hybrid composite cathode composed of NiFe-assisted reduced graphene oxide(rGO),poly(4-vinyl)pyridine(PVP),and Nafion.展开更多
基金financially supported by the Leader Project at the Korea Institute of Energy Technology(KENTECH)for Environmental and Climate Technology,funded by the Ministry of Science and ICT through the National Research Foundation of Korea(No.2020R1A3B3079715)The large-scale CO_(2)RR for future work is in process and is financially supported by the Korea Evaluation Institute of Industrial Technology(Alchemist Project,NTIS-2410005253,20018904)through the Ministry of Trade,Industry and Energy,Koreasupported by the National Supercomputing Center with supercomputing resources,including technical support(KSC-2022-CRE-0286).
文摘Achieving carbon neutrality is urgent due to the critical issue of climate change.To reach this goal,the development of new,breakthrough technologies is necessary and urgent.One such technology involves efficient carbon capture and its conversion into useful chemicals or fuels.However,achieving considerable amounts of efficiency in this field is a very challenging task.Even in natural photosynthesis occurring in plant leaves,the CO_(2)conversion efficiency into hydrocarbons cannot exceed a value of 1%.Nevertheless,recently few reports show comparable higher efficiency in CO_(2)to gaseous products such as carbon monoxide(CO),but it is hard to find selective liquid fuel products with a high value of solar to liquid fuel conversion efficiency.Herein,a NiFe-assisted hybrid composite dark cathode is employed for the selective production of solar-to-liquid fuels,in conjunction with a BiVO4 photoanode.This process results in the generation of significant amounts of formaldehyde,ethanol,and methanol selectively.The primary objective of this study is to design and optimize a novel photoelectrochemical(PEC)system to produce solar-to-liquid fuels selectively.This study shows the enhancement of the solar-to-fuel conversion efficiency over 1.5%by employing a hybrid composite cathode composed of NiFe-assisted reduced graphene oxide(rGO),poly(4-vinyl)pyridine(PVP),and Nafion.