Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements in soils. It is also essential for the soil-plant interaction purpose. To id...Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements in soils. It is also essential for the soil-plant interaction purpose. To identify soil mineral phases especially clay minerals, X-ray diffraction (XRD) has been a popular technique. The clay mineralogical information of soils in Bangladesh is limited, especially in Ganges flood plain region (Agro Ecological Zone (AEZ) 12 and 13). Therefore, to overcome this limitation, in this study, we performed XRD analysis of <2 mm fractions soil samples of AEX 12 and 13. However, identifying mineralogical phases by XRD in <2 mm fractions soils is not so straight-forward due to many practical problems. We fully matched only two mineralogical phases in all the soil samples which is quartz and potassium-Aluminum-Silicate. However, the full XRD peaks indicate that more minerals are also present, but due to heterogeneity of soils samples, it is difficult to find other minerals phases by only XRD peak of <2 mm fractions. Therefore, to find more information about mineralogical phases, we performed XRF analysis that provides the elemental composition of minerals phase as oxide. XRF analysis indicated the presence of secondary minerals like illite and chlorite. The presence of high percentage Fe oxide not only indicated the iron mineral phase (goethite and ferrihydrite) but also indicated iron rich high charge smectite minerals (beidellite). The presence of iron rich smectite minerals in the Ganges sediments reported in several previous studies. Thus, we concluded that only XRD in <2 mm fractions of soils is not adequate to identify the mineralogical phases of soil samples. Others analyses like XRF, XRD in <2 μm fractions will be necessary to locate an entire image of soil mineralogical phases.展开更多
Assessment of soil organic matter fractions can be instrumental in understanding the causes of limited nitrogen supply, and thus soil fertility restoration. A study was conducted in cultivated and uncultivated saline ...Assessment of soil organic matter fractions can be instrumental in understanding the causes of limited nitrogen supply, and thus soil fertility restoration. A study was conducted in cultivated and uncultivated saline soil, in order to assay soil organic carbon (SOC), its particle-size fractions and their influence on cultivation and soil fertility at Sundarbans costal area in Bangladesh. Soil samples were taken from the 0 - 15 and 15 - 30 cm depths from four cultivated fields and from four nearby sites in a native mangrove forest as references. Soil samples were physically fractionated into sand (2000-50 μm), silt (50-2 μm) and clay (<2 μm). Total SOC and N were analyzed in bulk samples and each size fraction, and the Carbon Management Index (CMI), a widely used indicator of soil quality, was calculated for each field. The CMI in cultivated soils was far below the 100% in reference soils, reaching 38.16%, 25.70%, 32.21% and 34.43% in Field 1, Field 2, Field 3 and Field 4 respectively. SOC and N concentrations decreased in particle size separates in the order clay > silt > sand. The SOC pool and N in the clay-sized fraction were correlated to soil fertility indicators. More N was stored in the silt + clay size fractions, a generally more stable pool, than in the more labile sand-sized pool. The SOC pool in sand size fractions was far below in cultivated soils than in a reference uncultivated soil. Thus, the sand-sized pool emerged as the most likely cause of limited N supply in cultivated soils.展开更多
文摘Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements in soils. It is also essential for the soil-plant interaction purpose. To identify soil mineral phases especially clay minerals, X-ray diffraction (XRD) has been a popular technique. The clay mineralogical information of soils in Bangladesh is limited, especially in Ganges flood plain region (Agro Ecological Zone (AEZ) 12 and 13). Therefore, to overcome this limitation, in this study, we performed XRD analysis of <2 mm fractions soil samples of AEX 12 and 13. However, identifying mineralogical phases by XRD in <2 mm fractions soils is not so straight-forward due to many practical problems. We fully matched only two mineralogical phases in all the soil samples which is quartz and potassium-Aluminum-Silicate. However, the full XRD peaks indicate that more minerals are also present, but due to heterogeneity of soils samples, it is difficult to find other minerals phases by only XRD peak of <2 mm fractions. Therefore, to find more information about mineralogical phases, we performed XRF analysis that provides the elemental composition of minerals phase as oxide. XRF analysis indicated the presence of secondary minerals like illite and chlorite. The presence of high percentage Fe oxide not only indicated the iron mineral phase (goethite and ferrihydrite) but also indicated iron rich high charge smectite minerals (beidellite). The presence of iron rich smectite minerals in the Ganges sediments reported in several previous studies. Thus, we concluded that only XRD in <2 mm fractions of soils is not adequate to identify the mineralogical phases of soil samples. Others analyses like XRF, XRD in <2 μm fractions will be necessary to locate an entire image of soil mineralogical phases.
文摘Assessment of soil organic matter fractions can be instrumental in understanding the causes of limited nitrogen supply, and thus soil fertility restoration. A study was conducted in cultivated and uncultivated saline soil, in order to assay soil organic carbon (SOC), its particle-size fractions and their influence on cultivation and soil fertility at Sundarbans costal area in Bangladesh. Soil samples were taken from the 0 - 15 and 15 - 30 cm depths from four cultivated fields and from four nearby sites in a native mangrove forest as references. Soil samples were physically fractionated into sand (2000-50 μm), silt (50-2 μm) and clay (<2 μm). Total SOC and N were analyzed in bulk samples and each size fraction, and the Carbon Management Index (CMI), a widely used indicator of soil quality, was calculated for each field. The CMI in cultivated soils was far below the 100% in reference soils, reaching 38.16%, 25.70%, 32.21% and 34.43% in Field 1, Field 2, Field 3 and Field 4 respectively. SOC and N concentrations decreased in particle size separates in the order clay > silt > sand. The SOC pool and N in the clay-sized fraction were correlated to soil fertility indicators. More N was stored in the silt + clay size fractions, a generally more stable pool, than in the more labile sand-sized pool. The SOC pool in sand size fractions was far below in cultivated soils than in a reference uncultivated soil. Thus, the sand-sized pool emerged as the most likely cause of limited N supply in cultivated soils.