Precise real-time obstacle recognition is both vital to vehicle automation and extremely resource intensive. Current deep-learning based recognition techniques generally reach high recognition accuracy, but require ex...Precise real-time obstacle recognition is both vital to vehicle automation and extremely resource intensive. Current deep-learning based recognition techniques generally reach high recognition accuracy, but require extensive processing power. This study proposes a region of interest extraction method based on the maximum difference method and morphology, and a target recognition solution created with a deep convolutional neural network. In the proposed solution, the central processing unit and graphics processing unit work collaboratively. Compared with traditional deep learning solutions, the proposed solution decreases the complexity of algorithm, and improves both calculation efficiency and recognition accuracy. Overall it achieves a good balance between accuracy and computation.展开更多
Thermal print head heating real-time temperature fluctuations are too large,often causing damage to the print head heating point,resulting in poor print quality and unsatisfactory print results.Therefore,to improve th...Thermal print head heating real-time temperature fluctuations are too large,often causing damage to the print head heating point,resulting in poor print quality and unsatisfactory print results.Therefore,to improve the stability of the thermal print head during printing,and at the same time to solve the inefficiency of the traditional single-chip microcomputer control of the thermal print head heating method,a field programmable gate array-based thermal print head heating control method is proposed.To control the core,the intelligent fuzzy Proportional-Integral-Differential(PID)control algorithm is used to ensure that the temperature of the print head can be stabilized quickly.Through simulation and experimental verification,it is shown that the intelligent fuzzy PID control algorithm greatly improves the temperature stabilization effect,and the time required to reach stability short not only improve the printing accuracy but also extend the life of the print head.展开更多
基金This work is jointly supported by the National Natural Science Foundation of China under grant 61703347the Chongqing Natural Science Foundation grant cstc2016jcyjA0428+2 种基金the Common Key Technology Innovation Special of Key Industries under grant no. cstc2017zdcy-zdyf0252 and cstc2017zdcy-zdyfX0055the Artificial Intelligence Technology Innovation Significant Theme Special Project under grant nos. cstc2017rgzn-zdyf0073 and cstc2017rgznzdyf0033the China University of Mining and Technology Teaching and Research Project (2018ZD03, 2018YB10).
文摘Precise real-time obstacle recognition is both vital to vehicle automation and extremely resource intensive. Current deep-learning based recognition techniques generally reach high recognition accuracy, but require extensive processing power. This study proposes a region of interest extraction method based on the maximum difference method and morphology, and a target recognition solution created with a deep convolutional neural network. In the proposed solution, the central processing unit and graphics processing unit work collaboratively. Compared with traditional deep learning solutions, the proposed solution decreases the complexity of algorithm, and improves both calculation efficiency and recognition accuracy. Overall it achieves a good balance between accuracy and computation.
文摘Thermal print head heating real-time temperature fluctuations are too large,often causing damage to the print head heating point,resulting in poor print quality and unsatisfactory print results.Therefore,to improve the stability of the thermal print head during printing,and at the same time to solve the inefficiency of the traditional single-chip microcomputer control of the thermal print head heating method,a field programmable gate array-based thermal print head heating control method is proposed.To control the core,the intelligent fuzzy Proportional-Integral-Differential(PID)control algorithm is used to ensure that the temperature of the print head can be stabilized quickly.Through simulation and experimental verification,it is shown that the intelligent fuzzy PID control algorithm greatly improves the temperature stabilization effect,and the time required to reach stability short not only improve the printing accuracy but also extend the life of the print head.