Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a compo...Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetoteUuric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-proffie conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.展开更多
With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) wh...With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004, we obtained the strike direction of each MT station by strike analysis, then traced profiles that were perpendicular to the main strike direction, and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models, we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 Ω.m. The depth of its bottom surface is about 15-20 km generally, but the bottom surface of resistive layer is deeper in the middle of these two profiles. At llne 900, it is about 30 km deep, and even at line 800, it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km, and a conductive layer is beneath it with resistivity even less than 5 Ω.m. This conductive layer is composed of individual conductive bodies, and at the south of the Yalung Tsangpo suture, the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However, at the north of the Yalung Tsangpo suture, the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively, the conductive bodies of line 900 are thinner than those of line 800, and the depth of the bottom surface of line 900 is also shallower. At last, after analyzing the effect factors to the resistivity of rocks, it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick, hot, flabby, and waxy.展开更多
To understand deep lithosphere structure beneath the Qinghai-Tibet Plateau more comprehensively and objectively and to explore important scientific issues,such as characteristics of plateau lithospheric deformation,st...To understand deep lithosphere structure beneath the Qinghai-Tibet Plateau more comprehensively and objectively and to explore important scientific issues,such as characteristics of plateau lithospheric deformation,state of strain,thermal structure,plate (or terrane) movement,and crust-mantle rheology,it is necessary to research the variation of crust-mantle electrical structure in the east-west direction in every geological unit.For this purpose,six super-broadband magnetotelluric (MT) sounding profiles have been completed by INDEPTH-MT Project in the Himalayas-Southern Tibet.Based on the imaging results from the six profiles,three-dimensional electrical conductivity structure of the crust and upper mantle has been analyzed for the research area.The result shows that the high-conductivity layers in the middle and lower crust exist widely in Southern Tibet,which extend discontinuously for more than 1000 km in the east-west direction and become thinner,shallower and more resistive toward the big turning of the Yarlung Zangbo River.The discussion on the rheology of lithosphere in Southern Tibet suggests that the mid-lower crust there is of high electrical conductivity,implying the existence of "partial-melt" and "hot fluid" in the thick crust of Tibet,which make the medium hot,soft,and plastic,or even able to flow.Combining the experimental result of petrophysics and the MT data,we estimate the melting percentage of the crustal material to be up to 5%-14%,which would reduce the viscosity of aplite in the crust to meet the flow condition;but for granite,it is likely not enough to cause such a change in rheology.展开更多
基金supported by grants from the National Natural Science Foundation of China(General Program No.40974058)National Science Fund for Distinguished Young Scholars(No.40904025 and 41404060)+4 种基金Fundamental Research Funds for the Central Universities(2652014016)National Natural Science Foundation of ChinaUnited States National Science FoundationScience Foundation of Ireland(award 08/RFP/GEO1693 to AGJ)Natural Science and Engineering Research Council(Canada)for financial support
文摘Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetoteUuric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-proffie conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.
基金This paper is supported by Ministry of Land and Resources (No. 2001010202)Ministry of Education (No. 0211)the Focused Subject Program of Beijing (No. XK104910598).
文摘With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004, we obtained the strike direction of each MT station by strike analysis, then traced profiles that were perpendicular to the main strike direction, and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models, we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 Ω.m. The depth of its bottom surface is about 15-20 km generally, but the bottom surface of resistive layer is deeper in the middle of these two profiles. At llne 900, it is about 30 km deep, and even at line 800, it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km, and a conductive layer is beneath it with resistivity even less than 5 Ω.m. This conductive layer is composed of individual conductive bodies, and at the south of the Yalung Tsangpo suture, the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However, at the north of the Yalung Tsangpo suture, the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively, the conductive bodies of line 900 are thinner than those of line 800, and the depth of the bottom surface of line 900 is also shallower. At last, after analyzing the effect factors to the resistivity of rocks, it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick, hot, flabby, and waxy.
基金supported by National Natural Science Foundation of China (Grant No. 40674045)National Special Project of China Sino-Probe-01
文摘To understand deep lithosphere structure beneath the Qinghai-Tibet Plateau more comprehensively and objectively and to explore important scientific issues,such as characteristics of plateau lithospheric deformation,state of strain,thermal structure,plate (or terrane) movement,and crust-mantle rheology,it is necessary to research the variation of crust-mantle electrical structure in the east-west direction in every geological unit.For this purpose,six super-broadband magnetotelluric (MT) sounding profiles have been completed by INDEPTH-MT Project in the Himalayas-Southern Tibet.Based on the imaging results from the six profiles,three-dimensional electrical conductivity structure of the crust and upper mantle has been analyzed for the research area.The result shows that the high-conductivity layers in the middle and lower crust exist widely in Southern Tibet,which extend discontinuously for more than 1000 km in the east-west direction and become thinner,shallower and more resistive toward the big turning of the Yarlung Zangbo River.The discussion on the rheology of lithosphere in Southern Tibet suggests that the mid-lower crust there is of high electrical conductivity,implying the existence of "partial-melt" and "hot fluid" in the thick crust of Tibet,which make the medium hot,soft,and plastic,or even able to flow.Combining the experimental result of petrophysics and the MT data,we estimate the melting percentage of the crustal material to be up to 5%-14%,which would reduce the viscosity of aplite in the crust to meet the flow condition;but for granite,it is likely not enough to cause such a change in rheology.