Ohmic Heating (OH) is one of the emerging thermal technologies used in food processing which can produce rapid and uniform heating with close to 100% energy transfer efficiency. Although mathematical </span><...Ohmic Heating (OH) is one of the emerging thermal technologies used in food processing which can produce rapid and uniform heating with close to 100% energy transfer efficiency. Although mathematical </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> for OH processes has been studied by many researchers in recent years, systematic simulations of OH have not been developed for model-based control of the processes. In this paper, </span><span style="font-family:Verdana;">mathematical</span><span style="font-family:Verdana;"> model for a Colinear Ohmic Heater is presented, analyzed, and studied based on the selected configuration. A numerical solution for the mathematical equations has been defined and proposed. MATLAB/Simulink model is hence developed and validated against the available data. Simulation results have shown that </span><span style="font-family:Verdana;">MATLAB</span><span style="font-family:Verdana;">/Simulink model can produce robust outputs at low computational costs with an accuracy of up to 99.6% in comparison to the analytical solution. This model can be used in further studies for analysis of the OH processes and development of advanced controllers.展开更多
文摘Ohmic Heating (OH) is one of the emerging thermal technologies used in food processing which can produce rapid and uniform heating with close to 100% energy transfer efficiency. Although mathematical </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> for OH processes has been studied by many researchers in recent years, systematic simulations of OH have not been developed for model-based control of the processes. In this paper, </span><span style="font-family:Verdana;">mathematical</span><span style="font-family:Verdana;"> model for a Colinear Ohmic Heater is presented, analyzed, and studied based on the selected configuration. A numerical solution for the mathematical equations has been defined and proposed. MATLAB/Simulink model is hence developed and validated against the available data. Simulation results have shown that </span><span style="font-family:Verdana;">MATLAB</span><span style="font-family:Verdana;">/Simulink model can produce robust outputs at low computational costs with an accuracy of up to 99.6% in comparison to the analytical solution. This model can be used in further studies for analysis of the OH processes and development of advanced controllers.