Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
Ultrafast supercontinuum generation in gas-filled waveguides is an enabling technology for many intriguing applications ranging from attosecond metrology towards biophotonics,with the amount of spectral broadening cru...Ultrafast supercontinuum generation in gas-filled waveguides is an enabling technology for many intriguing applications ranging from attosecond metrology towards biophotonics,with the amount of spectral broadening crucially depending on the pulse dispersion of the propagating mode.In this study,we show that structural resonances in a gas-filled antiresonant hollow core optical fiber provide an additional degree of freedom in dispersion engineering,which enables the generation of more than three octaves of broadband light that ranges from deep UV wavelengths to near infrared.Our observation relies on the introduction of a geometric-induced resonance in the spectral vicinity of the ultrafast pump laser,outperforming gas dispersion and yielding a unique dispersion profile independent of core size,which is highly relevant for scaling input powers.Using a krypton-filled fiber,we observe spectral broadening from 200 nm to 1.7μm at an output energy of B 23μJ within a single optical mode across the entire spectral bandwidth.Simulations show that the frequency generation results from an accelerated fission process of solitonlike waveforms in a non-adiabatic dispersion regime associated with the emission of multiple phase-matched Cherenkov radiations on both sides of the resonance.This effect,along with the dispersion tuning and scaling capabilities of the fiber geometry,enables coherent ultra-broadband and high-energy sources,which range from the UV to the mid‐infrared spectral range.展开更多
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
基金the federal state of Thuringia(FKZ:2012FGR0013 and FKZ:2016FGR0051)support from the Humboldt Foundation.R.S.acknowledges support from German Research Foundation(DFG)for funding through International Research Training Group(IRTG)2101support from German Research Foundation(DFG)via the project SCHM2655/3-1.
文摘Ultrafast supercontinuum generation in gas-filled waveguides is an enabling technology for many intriguing applications ranging from attosecond metrology towards biophotonics,with the amount of spectral broadening crucially depending on the pulse dispersion of the propagating mode.In this study,we show that structural resonances in a gas-filled antiresonant hollow core optical fiber provide an additional degree of freedom in dispersion engineering,which enables the generation of more than three octaves of broadband light that ranges from deep UV wavelengths to near infrared.Our observation relies on the introduction of a geometric-induced resonance in the spectral vicinity of the ultrafast pump laser,outperforming gas dispersion and yielding a unique dispersion profile independent of core size,which is highly relevant for scaling input powers.Using a krypton-filled fiber,we observe spectral broadening from 200 nm to 1.7μm at an output energy of B 23μJ within a single optical mode across the entire spectral bandwidth.Simulations show that the frequency generation results from an accelerated fission process of solitonlike waveforms in a non-adiabatic dispersion regime associated with the emission of multiple phase-matched Cherenkov radiations on both sides of the resonance.This effect,along with the dispersion tuning and scaling capabilities of the fiber geometry,enables coherent ultra-broadband and high-energy sources,which range from the UV to the mid‐infrared spectral range.