Fabricating a high-performing thermoset using bio-based flame retardant is critical for the sustain-able development of engineering materials with superior fire safety and robust mechanical properties.Herein,the epoxy...Fabricating a high-performing thermoset using bio-based flame retardant is critical for the sustain-able development of engineering materials with superior fire safety and robust mechanical properties.Herein,the epoxy(EP)composites with the industrial requirements are manufactured with a novel high-efficient,lignin-based flame retardant named DAL-x,which is fabricated by grafting 9,10-dihydro-9-oxa-10-phosphaze-10-oxide(DOPO)onto lignin.The resulting DAL-x/EP composite exhibits excellent flame retardancy with a desirable UL-94 V-0 rating and a satisfactory limiting oxygen index(LOI)of 29.8%due to the appropriate phosphorus content of DAL-x with adjustable molecular chain structure.More-over,the DAL-x/EP composite shows an unexpected improvement in the elastic modulus(∼36%)and well-preserved strength and ductility compared with those of pure EP.This work offers a feasible strat-egy for creating efficient bio-based flame retardants utilizing industrial waste lignin and preparing high-performance EP composites that meet the demanding requirement of fire retardancy in industries,con-tributing to the circular economy and sustainability.展开更多
Renewable and biodegradable polylactide (PLA) has excellent mechanical strength but is highly flammable which restricts its practical applications. Many phosphorus/nitrogen (P/N)-based flame retardants are ef- fective...Renewable and biodegradable polylactide (PLA) has excellent mechanical strength but is highly flammable which restricts its practical applications. Many phosphorus/nitrogen (P/N)-based flame retardants are ef- fective in PLA, but their high addition loading usually decreases the mechanical strength of the PLA bulk. For polyphosphoramides, despite high fire-retardant efficiency, their chemical synthesis often generates chemical wastes as byproducts. Herein, we report an atom-economic and highly efficient oligomeric P/N fire retardant (APN) prepared using a mild Michael addition polymerization with no byproducts. Using only 3 wt% APN, the resulting PLA exhibits desired fire retardancy including a UL-94 V-0 rating and a limiting oxygen index of 37.6%. Furthermore, the toughness of the fire-retardant PLA increases by 85% compared to pure PLA, with both tensile strength and thermal stability preserved. This work offers an atom-economic strategy for synthesizing highly efficient P/N fire retardants for use in the creation of fire-resistant PLA with robust mechanical properties.展开更多
Thermoplastic polyurethane(PU)elastomers have attracted significant attention because of their many important industrial applications.However,the creation of fire-retardant and anti-dripping PU elastomers has remained...Thermoplastic polyurethane(PU)elastomers have attracted significant attention because of their many important industrial applications.However,the creation of fire-retardant and anti-dripping PU elastomers has remained a grant challenge due to the lack of crosslinking and weak interchain interactions.Herein,we report a mechanically robust,biodegradable,fire-retardant,and anti-dripping biobased PU elastomer with excellent biodegradability using an abietic acid-based compound as hard segments and polycaprolactone diol(PCL)as soft segments,followed by physically crosslinking with cellulose nanocrystals(CNC)through dynamic hydrogen-bonding.The resultant elastomer shows the balanced mechanical and fire-retardant properties,e.g.,a tensile strength and break strain of 9.1 MPa and 560%,a self-extinguishing ability(V-0 rating in UL-94 testing),and an anti-dripping behavior.Moreover,the as-developed PU can be completely degraded in 1.0 wt.%lipase solution at 37℃ in 60 days,arising from the catalytic and wicking effect of CNC on PU chains.This work provides an innovative and versatile strategy for constructing robust,fire-retardant,anti-dripping,and biodegradable PU elastomers,which hold great promise for practical applications in electronic and automobile sectors.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51873196 and 51903222)the Australian Research Council(Nos.LP220100278,DP190102992 and FT190100188)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LY21E030001)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C03128).
文摘Fabricating a high-performing thermoset using bio-based flame retardant is critical for the sustain-able development of engineering materials with superior fire safety and robust mechanical properties.Herein,the epoxy(EP)composites with the industrial requirements are manufactured with a novel high-efficient,lignin-based flame retardant named DAL-x,which is fabricated by grafting 9,10-dihydro-9-oxa-10-phosphaze-10-oxide(DOPO)onto lignin.The resulting DAL-x/EP composite exhibits excellent flame retardancy with a desirable UL-94 V-0 rating and a satisfactory limiting oxygen index(LOI)of 29.8%due to the appropriate phosphorus content of DAL-x with adjustable molecular chain structure.More-over,the DAL-x/EP composite shows an unexpected improvement in the elastic modulus(∼36%)and well-preserved strength and ductility compared with those of pure EP.This work offers a feasible strat-egy for creating efficient bio-based flame retardants utilizing industrial waste lignin and preparing high-performance EP composites that meet the demanding requirement of fire retardancy in industries,con-tributing to the circular economy and sustainability.
基金the National Natural Science Foundation of China(No.21801097)the Australian Re-search Council(Nos.DP190102992 and FT190100188).
文摘Renewable and biodegradable polylactide (PLA) has excellent mechanical strength but is highly flammable which restricts its practical applications. Many phosphorus/nitrogen (P/N)-based flame retardants are ef- fective in PLA, but their high addition loading usually decreases the mechanical strength of the PLA bulk. For polyphosphoramides, despite high fire-retardant efficiency, their chemical synthesis often generates chemical wastes as byproducts. Herein, we report an atom-economic and highly efficient oligomeric P/N fire retardant (APN) prepared using a mild Michael addition polymerization with no byproducts. Using only 3 wt% APN, the resulting PLA exhibits desired fire retardancy including a UL-94 V-0 rating and a limiting oxygen index of 37.6%. Furthermore, the toughness of the fire-retardant PLA increases by 85% compared to pure PLA, with both tensile strength and thermal stability preserved. This work offers an atom-economic strategy for synthesizing highly efficient P/N fire retardants for use in the creation of fire-resistant PLA with robust mechanical properties.
基金support of the National Natural Science Foundation of China(Nos.32301545 and 32071712)the Jiangsu Key Laboratory of Biomass Energy and Materials(No.JSBEM-S-202312)the Australian Research Council(Nos.FT190100188 and LP230100278).
文摘Thermoplastic polyurethane(PU)elastomers have attracted significant attention because of their many important industrial applications.However,the creation of fire-retardant and anti-dripping PU elastomers has remained a grant challenge due to the lack of crosslinking and weak interchain interactions.Herein,we report a mechanically robust,biodegradable,fire-retardant,and anti-dripping biobased PU elastomer with excellent biodegradability using an abietic acid-based compound as hard segments and polycaprolactone diol(PCL)as soft segments,followed by physically crosslinking with cellulose nanocrystals(CNC)through dynamic hydrogen-bonding.The resultant elastomer shows the balanced mechanical and fire-retardant properties,e.g.,a tensile strength and break strain of 9.1 MPa and 560%,a self-extinguishing ability(V-0 rating in UL-94 testing),and an anti-dripping behavior.Moreover,the as-developed PU can be completely degraded in 1.0 wt.%lipase solution at 37℃ in 60 days,arising from the catalytic and wicking effect of CNC on PU chains.This work provides an innovative and versatile strategy for constructing robust,fire-retardant,anti-dripping,and biodegradable PU elastomers,which hold great promise for practical applications in electronic and automobile sectors.