Managing TG-51 reference dosimetry in a large hospital network can be a challenging task. The objectives of this study are to investigate the effectiveness of using Statistical Process Control (SPC) to manage TG-51 wo...Managing TG-51 reference dosimetry in a large hospital network can be a challenging task. The objectives of this study are to investigate the effectiveness of using Statistical Process Control (SPC) to manage TG-51 workflow in such a network. All the sites in the network performed the annual reference dosimetry in water according to TG-51. These data were used to cross-calibrate the same ion chambers in plastic phantoms for monthly QA output measurements. An energy-specific dimensionless beam quality cross-calibration factor, <img src="Edit_6bfb9907-c034-4197-97a7-e8337a7fc21a.png" width="20" height="19" alt="" />, was derived to monitor the process across multiple sites. The SPC analysis was then performed to obtain the mean, <img src="Edit_c630a2dd-f714-4042-a46e-da0ca863cb41.png" width="30" height="20" alt="" /> , standard deviation, <span style="font-size:6.5pt;font-family:;" "=""><span style="white-space:normal;"><span style="font-size:6.5pt;font-family:"">σ</span><span style="white-space:nowrap;"><sub><i>k</i></sub></span></span></span>, the Upper Control Limit (UCL) and Lower Control Limit (LCL) in each beam. This process was first applied to 15 years of historical data at the main campus to assess the effectiveness of the process. A two-year prospective study including all 30 linear accelerators spread over the main campus and seven satellites in the network followed. The ranges of the control limits (±3σ) were found to be in the range of 1.7% - 2.6% and 3.3% - 4.2% for the main campus and the satellite sites respectively. The wider range in the satellite sites was attributed to variations in the workflow. Standardization of workflow was also found to be effective in narrowing the control limits. The SPC is effective in identifying variations in the workflow and was shown to be an effective tool in managing large network reference dosimetry.展开更多
For positioning a moving target, a maximum intensity projection (MIP) or average intensity projection (AIP) image derived from 4DCT is often used as the reference image which is matched to free breathing cone-beam CT ...For positioning a moving target, a maximum intensity projection (MIP) or average intensity projection (AIP) image derived from 4DCT is often used as the reference image which is matched to free breathing cone-beam CT (FBCBCT) before treatment. This method can be highly accurate if the respiratory motion of the patient is stable. However, a patient’s breathing pattern is often irregular. The purpose of this study is to investigate the effects of irregular respiration on positioning accuracy for a moving target aligned with FBCBCT. Nine patients’ respiratory motion curves were selected to drive a Quasar motion phantom with one embedded cubic and two spherical targets. A 4DCT of the phantom was acquired on a CT scanner (Philips Brilliance 16) equipped with a Varian RPM system. The phase binned 4DCT images and the corresponding MIP and AIP images were transferred into Eclipse for analysis. FBCBCTs of the phantom driven by the same respiratory curves were also acquired on a Varian TrueBeam and fused such that both CBCT and MIP/AIP images share the same target zero positions. The sphere and cube volumes and centroid differences (alignment error) determined by MIP, AIP and FBCBCT images were calculated, respectively. Compared to the volume determined by MIP, the volumes of the cube, large sphere, and small sphere in AIP and FBCBCT images were smaller. The alignment errors for the cube, large sphere and small sphere with center to center matches between MIP and FBCBCT were 2.5 ± 1.8 mm, 2.4 ± 2.1 mm, and 3.8 ± 2.8 mm, and the alignment errors between AIP and FBCBCT were 0.5 ± 1.1 mm, 0.3 ± 0.8 mm, and 1.8 ± 2.0 mm, respectively. AIP images appear to be superior reference images to MIP images. However, irregular respiratory pattern could compromise the positioning accuracy, especially for smaller targets.展开更多
Purpose: To derive a clinically-practical margin formula between clinical target volume (CTV) and planning target volume (PTV) for single-fraction stereotactic radiosurgery (SRS). Methods: In previous publications on ...Purpose: To derive a clinically-practical margin formula between clinical target volume (CTV) and planning target volume (PTV) for single-fraction stereotactic radiosurgery (SRS). Methods: In previous publications on the margin between the CTV and the PTV, a Gaussian function with zero mean was assumed for the systematic error and the machine systematic error was completely ignored. In this work we adopted a Dirac delta function for the machine systematic error for a given machine with nonzero mean systematic error. Mathematical formulas for calculating the CTV-PTV margin for single-fraction SRS treatments were proposed. Results: Margins for single fraction treatments were derived such that the CTVs received the prescribed dose in 95% of the SRS patients. The margin defined in this study was machine specific and accounted for nonzero mean systematic error. The differences between our formulas and a previously published formula were discussed. Conclusion: Clinical margin formulas were proposed for determining the margin between the CTV and the PTV in SRS treatments. Previous margin’s recipes, being derived specifically for conventional treatments, may be inappropriate for single-fraction SRS and could result in geometric miss of the target and even treatment failure for machines possessing of large systematic errors.展开更多
Segmentation of prostate Cone Beam CT (CBCT) images is an essential step towards real-time adaptive radiotherapy (ART). It is challenging for Calypso patients, as more artifacts generated by the beacon transponders ar...Segmentation of prostate Cone Beam CT (CBCT) images is an essential step towards real-time adaptive radiotherapy (ART). It is challenging for Calypso patients, as more artifacts generated by the beacon transponders are present on the images. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. For a given CBCT, a Moving Window-Based Double Haar (MWDH) transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied on the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary (segmented) image of the object of interest is therefore obtained. 5 hypofractionated Calypso prostate patients with daily CBCT were studied. DICE, Sensitivity, Inclusiveness and ΔV were used to evaluate the segmentation result.展开更多
The original online version of this article (Liu, Y.X., Saleh, Z., Song, Y.L., Chan, M., Li, X., Shi, C.Y., Qian, X. and Tang, X.L (2017) Novel Wavelet-Based Segmentation of Prostate CBCT Images with Implanted Calypso...The original online version of this article (Liu, Y.X., Saleh, Z., Song, Y.L., Chan, M., Li, X., Shi, C.Y., Qian, X. and Tang, X.L (2017) Novel Wavelet-Based Segmentation of Prostate CBCT Images with Implanted Calypso Transponders. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 6, 336-343. doi: 10.4236/ijmpcero.2017.63030) was published without acknowledging our support. The authors wish to add the acknowledgments.展开更多
文摘Managing TG-51 reference dosimetry in a large hospital network can be a challenging task. The objectives of this study are to investigate the effectiveness of using Statistical Process Control (SPC) to manage TG-51 workflow in such a network. All the sites in the network performed the annual reference dosimetry in water according to TG-51. These data were used to cross-calibrate the same ion chambers in plastic phantoms for monthly QA output measurements. An energy-specific dimensionless beam quality cross-calibration factor, <img src="Edit_6bfb9907-c034-4197-97a7-e8337a7fc21a.png" width="20" height="19" alt="" />, was derived to monitor the process across multiple sites. The SPC analysis was then performed to obtain the mean, <img src="Edit_c630a2dd-f714-4042-a46e-da0ca863cb41.png" width="30" height="20" alt="" /> , standard deviation, <span style="font-size:6.5pt;font-family:;" "=""><span style="white-space:normal;"><span style="font-size:6.5pt;font-family:"">σ</span><span style="white-space:nowrap;"><sub><i>k</i></sub></span></span></span>, the Upper Control Limit (UCL) and Lower Control Limit (LCL) in each beam. This process was first applied to 15 years of historical data at the main campus to assess the effectiveness of the process. A two-year prospective study including all 30 linear accelerators spread over the main campus and seven satellites in the network followed. The ranges of the control limits (±3σ) were found to be in the range of 1.7% - 2.6% and 3.3% - 4.2% for the main campus and the satellite sites respectively. The wider range in the satellite sites was attributed to variations in the workflow. Standardization of workflow was also found to be effective in narrowing the control limits. The SPC is effective in identifying variations in the workflow and was shown to be an effective tool in managing large network reference dosimetry.
文摘For positioning a moving target, a maximum intensity projection (MIP) or average intensity projection (AIP) image derived from 4DCT is often used as the reference image which is matched to free breathing cone-beam CT (FBCBCT) before treatment. This method can be highly accurate if the respiratory motion of the patient is stable. However, a patient’s breathing pattern is often irregular. The purpose of this study is to investigate the effects of irregular respiration on positioning accuracy for a moving target aligned with FBCBCT. Nine patients’ respiratory motion curves were selected to drive a Quasar motion phantom with one embedded cubic and two spherical targets. A 4DCT of the phantom was acquired on a CT scanner (Philips Brilliance 16) equipped with a Varian RPM system. The phase binned 4DCT images and the corresponding MIP and AIP images were transferred into Eclipse for analysis. FBCBCTs of the phantom driven by the same respiratory curves were also acquired on a Varian TrueBeam and fused such that both CBCT and MIP/AIP images share the same target zero positions. The sphere and cube volumes and centroid differences (alignment error) determined by MIP, AIP and FBCBCT images were calculated, respectively. Compared to the volume determined by MIP, the volumes of the cube, large sphere, and small sphere in AIP and FBCBCT images were smaller. The alignment errors for the cube, large sphere and small sphere with center to center matches between MIP and FBCBCT were 2.5 ± 1.8 mm, 2.4 ± 2.1 mm, and 3.8 ± 2.8 mm, and the alignment errors between AIP and FBCBCT were 0.5 ± 1.1 mm, 0.3 ± 0.8 mm, and 1.8 ± 2.0 mm, respectively. AIP images appear to be superior reference images to MIP images. However, irregular respiratory pattern could compromise the positioning accuracy, especially for smaller targets.
文摘Purpose: To derive a clinically-practical margin formula between clinical target volume (CTV) and planning target volume (PTV) for single-fraction stereotactic radiosurgery (SRS). Methods: In previous publications on the margin between the CTV and the PTV, a Gaussian function with zero mean was assumed for the systematic error and the machine systematic error was completely ignored. In this work we adopted a Dirac delta function for the machine systematic error for a given machine with nonzero mean systematic error. Mathematical formulas for calculating the CTV-PTV margin for single-fraction SRS treatments were proposed. Results: Margins for single fraction treatments were derived such that the CTVs received the prescribed dose in 95% of the SRS patients. The margin defined in this study was machine specific and accounted for nonzero mean systematic error. The differences between our formulas and a previously published formula were discussed. Conclusion: Clinical margin formulas were proposed for determining the margin between the CTV and the PTV in SRS treatments. Previous margin’s recipes, being derived specifically for conventional treatments, may be inappropriate for single-fraction SRS and could result in geometric miss of the target and even treatment failure for machines possessing of large systematic errors.
文摘Segmentation of prostate Cone Beam CT (CBCT) images is an essential step towards real-time adaptive radiotherapy (ART). It is challenging for Calypso patients, as more artifacts generated by the beacon transponders are present on the images. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. For a given CBCT, a Moving Window-Based Double Haar (MWDH) transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied on the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary (segmented) image of the object of interest is therefore obtained. 5 hypofractionated Calypso prostate patients with daily CBCT were studied. DICE, Sensitivity, Inclusiveness and ΔV were used to evaluate the segmentation result.
文摘The original online version of this article (Liu, Y.X., Saleh, Z., Song, Y.L., Chan, M., Li, X., Shi, C.Y., Qian, X. and Tang, X.L (2017) Novel Wavelet-Based Segmentation of Prostate CBCT Images with Implanted Calypso Transponders. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 6, 336-343. doi: 10.4236/ijmpcero.2017.63030) was published without acknowledging our support. The authors wish to add the acknowledgments.