期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Method of cells-based multiscale modeling of elastic properties of filament wound C/C-SiC including free Si and matrix porosity
1
作者 Evan J.Pineda marek fassin +1 位作者 Stefanie Reese Jaan-Willem Simon 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2906-2918,共13页
Three different multiscale models, based on the method of cells(generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the ... Three different multiscale models, based on the method of cells(generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent modeling of all phases using the generalized method of cells, synergistic(two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical(one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC.Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute. Finally, un-reacted Si(or free Si) and porosity in the C matrix are included in the multiscale model, and the effect of these new phases on the stiffness and local stresses are considered. 展开更多
关键词 Multiscale modeling C/C-SIC Ceramic matrix composites
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部