期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fluorescence Intensity Decay Shape Analysis Microscopy (FIDSAM) for Quantitative and Sensitive Live-Cell Imaging: A Novel Technique for Fluorescence Microscopy of Endogenously Expressed Fusion-Proteins 被引量:2
1
作者 Frank Schleifenbaum Kirstin Elgass +4 位作者 marcus sackrow Katharina Caesar Kenneth Berendzen Alfred J. Meixner Klaus Hatter 《Molecular Plant》 SCIE CAS CSCD 2010年第3期555-562,共8页
Fluorescent studies of living plant cells such as confocal microscopy and fluorescence lifetime imaging often suffer from a strong autofluorescent background contribution that significantly reduces the dynamic image c... Fluorescent studies of living plant cells such as confocal microscopy and fluorescence lifetime imaging often suffer from a strong autofluorescent background contribution that significantly reduces the dynamic image contrast and the quantitative access to sub-cellular processes at high spatial resolution. Here, we present a novel technique--fluorescence intensity decay shape analysis microscopy (FIDSAM) to enhance the dynamic contrast of a fluorescence image of at least one order of magnitude. The method is based on the analysis of the shape of the fluorescence intensity decay (fluorescence lifetime curve) and benefits from the fact that the decay patterns of typical fluorescence label dyes strongly differ from emission decay curves of autofluorescent sample areas. Using FIDSAM, we investigated Arabidopsis thaliana hypocotyl cells in their tissue environment, which accumulate an eGFP fusion of the plasma membrane marker protein LTI6b (LTI6b-eGFP) to low level. Whereas in conventional confocal fluorescence images, the membranes of neighboring cells can hardly be optically resolved due to the strong autofluorescence of the cell wall, FIDSAM allows for imaging of single, isolated membranes at high spatial resolution. Thus, FIDSAM will enable the sub-cellular analysis of even low-expressed fluorophoretagged proteins in living plant cells. Furthermore, the combination of FIDSAM with fluorescence lifetime imaging provides the basis to study the local physico-chemical environment of fluorophore-tagged biomolecules in living plant cells. 展开更多
关键词 Cell structure cell walls membrane proteins high-resolution fluorescence microscopy.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部