A series of KY3F10 nanophosphors doped with Gd3+, Ce3+ and Eu3+ ions were obtained with the use of a co-precipitation method. The resulting products were white precipitates, consisting of spherical particles with d...A series of KY3F10 nanophosphors doped with Gd3+, Ce3+ and Eu3+ ions were obtained with the use of a co-precipitation method. The resulting products were white precipitates, consisting of spherical particles with diameter about 150-200 nm, which was confirmed using transmission electron microscopy (TEM) technique. Powder X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) measurements confirmed appropriate structures of the nanoparticles obtained. Spectroscopic properties of the prod- ucts were examined on the basis of the measured excitation/emission spectra and luminescence decay curves. The synthesized sam- ples showed orange-red luminescence, characteristic for Eu3+ ions. The reaction process was performed in required alkaline pH ad- justed with the use of ethylenediaminetetraacetic acid (EDTA) and potassium hydroxide. The samples containing large amounts of Gd3+ dooant ions exhibited a tendencv to form nroducts with different momhologies.展开更多
Praseodymium(III) doped CeF3, CeF3:Gd, LaF3, GdF3 and YF3 inorganic fluorides were precipitated in an aqueous, sur- factant-free solution, using NH4F as a source of fluoride ions. The as-prepared products were subj...Praseodymium(III) doped CeF3, CeF3:Gd, LaF3, GdF3 and YF3 inorganic fluorides were precipitated in an aqueous, sur- factant-free solution, using NH4F as a source of fluoride ions. The as-prepared products were subjected to a hydrothermal treatment, which led to the formation of crystalline nanoluminophores, composed of spherical (30 nm) and elongated (40-200 nm) nanos- tructures. Due to the presence of Pr3+ ions, the synthesized nanomaterials showed yellow luminescence under a blue light irradiation. The nanoluminophore based on the YF3 host revealed the most promising spectroscopic properties, i.e., bright and intensive emission, hence it was investigated in detail. The photophysical properties of the nanomaterials obtained were studied by powder X-ray diffrac- tion (XRD), transmission electron microscopy (TEM) and spectrofluorometry, i.e., measurements of excitation/emission spectra and luminescence decay curves.展开更多
The presented study concerned up-converting core/shell type nanomaterials based on lanthanide(Ⅲ) ions, Ln(Ⅲ), doped orthoborates. The system studied composed of the GdBO3 doped with Yb^3+/Tb^3+ luminescent cor...The presented study concerned up-converting core/shell type nanomaterials based on lanthanide(Ⅲ) ions, Ln(Ⅲ), doped orthoborates. The system studied composed of the GdBO3 doped with Yb^3+/Tb^3+ luminescent core ensured an effective cooperative sensitization up-conversion, resulting in a bright green luminescence. The silica coating process was performed by a modified St?ber method, which resulted in the formation of core-shell nanostructures, making them suitable for bioapplications. The nanophosphors and nanocomposites were obtained by various methods, such as co-precipitation in the presence of Triton X-100 and micelle synthesis with ethylenediaminetetraacetic acid(EDTA) as organic modifiers/surfactants. The synthesized nanomaterials were characterized with the use of powder X-ray diffraction(XRD), infrared light absorption with Fourier transform FT-IR spectra, transmission electron microscopy(TEM), up-conversion emission spectra under IR light, as well as excitation spectra, emission spectra and fluorescence lifetimes under UV light, and their photophysical properties were compared.展开更多
Multifunctional core/shell type,luminescent-plasmonic material composed of lanthanide doped microspheres(≈50μm)and gold nanoparticles(Au NPs;≈10-20 nm)deposited onto their surface,were successfully prepared(Nd^3+:Y...Multifunctional core/shell type,luminescent-plasmonic material composed of lanthanide doped microspheres(≈50μm)and gold nanoparticles(Au NPs;≈10-20 nm)deposited onto their surface,were successfully prepared(Nd^3+:YAS@Au).The material was synthesized to combine the luminescence properties of the Nd^3+-doped microspheres,i.e.whispering resonance with plasmonic activity of the surface Au NPs,i.e.surface enhanced Raman scattering(SERS)effect,within a single,micro-sized material.The luminescent-plasmonic microspheres were used as the active SERS substrate for detection of the organic probe,and for generation of Whispering Gallery Modes(WGM),which red-shift together with increasing laser power(temperature elevation).The products obtained were analysed with optical,scanning and transmission electron microscopy(SEM and TEM),as well as by Raman,absorption and photoluminescence spectroscopies.展开更多
基金Project supported by the Polish National Science Centre(2015/17/N/ST5/01947)
文摘A series of KY3F10 nanophosphors doped with Gd3+, Ce3+ and Eu3+ ions were obtained with the use of a co-precipitation method. The resulting products were white precipitates, consisting of spherical particles with diameter about 150-200 nm, which was confirmed using transmission electron microscopy (TEM) technique. Powder X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) measurements confirmed appropriate structures of the nanoparticles obtained. Spectroscopic properties of the prod- ucts were examined on the basis of the measured excitation/emission spectra and luminescence decay curves. The synthesized sam- ples showed orange-red luminescence, characteristic for Eu3+ ions. The reaction process was performed in required alkaline pH ad- justed with the use of ethylenediaminetetraacetic acid (EDTA) and potassium hydroxide. The samples containing large amounts of Gd3+ dooant ions exhibited a tendencv to form nroducts with different momhologies.
基金Project supported by the Polish National Science Centre(2015/17/N/ST5/01947)
文摘Praseodymium(III) doped CeF3, CeF3:Gd, LaF3, GdF3 and YF3 inorganic fluorides were precipitated in an aqueous, sur- factant-free solution, using NH4F as a source of fluoride ions. The as-prepared products were subjected to a hydrothermal treatment, which led to the formation of crystalline nanoluminophores, composed of spherical (30 nm) and elongated (40-200 nm) nanos- tructures. Due to the presence of Pr3+ ions, the synthesized nanomaterials showed yellow luminescence under a blue light irradiation. The nanoluminophore based on the YF3 host revealed the most promising spectroscopic properties, i.e., bright and intensive emission, hence it was investigated in detail. The photophysical properties of the nanomaterials obtained were studied by powder X-ray diffrac- tion (XRD), transmission electron microscopy (TEM) and spectrofluorometry, i.e., measurements of excitation/emission spectra and luminescence decay curves.
基金supported by the Polish Ministry of Science and Higher Education("Diamond Grant"Nr DI2011 011441)
文摘The presented study concerned up-converting core/shell type nanomaterials based on lanthanide(Ⅲ) ions, Ln(Ⅲ), doped orthoborates. The system studied composed of the GdBO3 doped with Yb^3+/Tb^3+ luminescent core ensured an effective cooperative sensitization up-conversion, resulting in a bright green luminescence. The silica coating process was performed by a modified St?ber method, which resulted in the formation of core-shell nanostructures, making them suitable for bioapplications. The nanophosphors and nanocomposites were obtained by various methods, such as co-precipitation in the presence of Triton X-100 and micelle synthesis with ethylenediaminetetraacetic acid(EDTA) as organic modifiers/surfactants. The synthesized nanomaterials were characterized with the use of powder X-ray diffraction(XRD), infrared light absorption with Fourier transform FT-IR spectra, transmission electron microscopy(TEM), up-conversion emission spectra under IR light, as well as excitation spectra, emission spectra and fluorescence lifetimes under UV light, and their photophysical properties were compared.
基金Project supported by the Polish National Science Centre(2015/17/N/ST5/01947)Spanish MINECO(MAT2015-71070-REDC,MAT2016-75586-C4-4-P)+1 种基金Ministry of Education and Science of the Russian Federation(14.Z50.31.0009),RFBR(17-53-04123)EU-FEDER funds
文摘Multifunctional core/shell type,luminescent-plasmonic material composed of lanthanide doped microspheres(≈50μm)and gold nanoparticles(Au NPs;≈10-20 nm)deposited onto their surface,were successfully prepared(Nd^3+:YAS@Au).The material was synthesized to combine the luminescence properties of the Nd^3+-doped microspheres,i.e.whispering resonance with plasmonic activity of the surface Au NPs,i.e.surface enhanced Raman scattering(SERS)effect,within a single,micro-sized material.The luminescent-plasmonic microspheres were used as the active SERS substrate for detection of the organic probe,and for generation of Whispering Gallery Modes(WGM),which red-shift together with increasing laser power(temperature elevation).The products obtained were analysed with optical,scanning and transmission electron microscopy(SEM and TEM),as well as by Raman,absorption and photoluminescence spectroscopies.