期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Predicting EHL film thickness parameters by machine learning approaches 被引量:3
1
作者 Max MARIAN Jonas MURSAK +3 位作者 marcel bartz Francisco J.PROFITO Andreas ROSENKRANZ Sandro WARTZACK 《Friction》 SCIE EI CAS CSCD 2023年第6期992-1013,共22页
Non-dimensional similarity groups and analytically solvable proximity equations can be used to estimate integral fluid film parameters of elastohydrodynamically lubricated(EHL)contacts.In this contribution,we demonstr... Non-dimensional similarity groups and analytically solvable proximity equations can be used to estimate integral fluid film parameters of elastohydrodynamically lubricated(EHL)contacts.In this contribution,we demonstrate that machine learning(ML)and artificial intelligence(AI)approaches(support vector machines,Gaussian process regressions,and artificial neural networks)can predict relevant film parameters more efficiently and with higher accuracy and flexibility compared to sophisticated EHL simulations and analytically solvable proximity equations,respectively.For this purpose,we use data from EHL simulations based upon the full-system finite element(FE)solution and a Latin hypercube sampling.We verify that the original input data are required to train ML approaches to achieve coefficients of determination above 0.99.It is revealed that the architecture of artificial neural networks(neurons per layer and number of hidden layers)and activation functions influence the prediction accuracy.The impact of the number of training data is exemplified,and recommendations for a minimum database size are given.We ultimately demonstrate that artificial neural networks can predict the locally-resolved film thickness values over the contact domain 25-times faster than FE-based EHL simulations(R^(2) values above 0.999).We assume that this will boost the use of ML approaches to predict EHL parameters and traction losses in multibody system dynamics simulations. 展开更多
关键词 machine learning elastohydrodynamic lubrication film thickness support vector machine Gaussian process regression artificial neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部