Non lubricated slide performance of functional grade copper matrix composite,fabricated using horizontal centrifuge cast technique was investigated using pin-on-disc tribo-tester.Rate of wear and friction coefficient ...Non lubricated slide performance of functional grade copper matrix composite,fabricated using horizontal centrifuge cast technique was investigated using pin-on-disc tribo-tester.Rate of wear and friction coefficient of the inner wall thickness of hollow cylindrical cast specimen was analyzed using Taguchi based L27 orthogonal array,where the percentage of graphite particles were observed higher.Variable process parameters those influenced the rate of wear directly or indirectly were:applied load(15,25 and 35 N),slide velocity(1.5,2.5 and 3.5 m/s)and slide distance(750,1500 and 2250 m).Rate of wear and friction coefficient showed a proportional dependency with applied load and slide distance,whereas showing a decline during intermediate slide velocity.Signal-to-Noise ratio predicted the minimal tribo-condition,on‘smaller-the-better’basis.Analysis of Variance technique quantified the influence of affecting parameters,along with their interactions.Regression analysis was utilized for the validation of the experimental data.Micrographs and scanning electron microscopy exhibited the wear mechanisms and mechanically mixed layer formation during worn surfaces analysis.展开更多
Aluminium hybrid functionally graded metal matrix composites(FGMMCs),meet growing demands for supreme tribo-mechanical performance in automotive and aviation industry.This research experimentally compares the influenc...Aluminium hybrid functionally graded metal matrix composites(FGMMCs),meet growing demands for supreme tribo-mechanical performance in automotive and aviation industry.This research experimentally compares the influence of carbide ceramics(B_(4)C,SiC,TiC)as reinforcements,in improving reciprocating tribology performance and mechanical strength of A333 hybrid composites against alloy.Hollow cylindrical samples of A333/6 wt%B_(4)C/4 wt%TiC and A333/6 wt%B_(4)C/4 wt%SiC hybrid FGMMCs were developed using horizontal centrifugal casting.Metallography analysis on both composites revealed increasing ceramic gradient distribution towards outer composite wall.Particle rich zone of A333/B_(4)C/SiC hybrid FGMMC showed maximum micro-hardness(198.9 HV)and tensile strength(267.9 MPa).Elemental mapping confirmed effective distribution of ceramics and detected elemental composition of both composites.Particle rich layer of A333/B_(4)C/SiC hybrid FGMMC exhibited improved wear resistance in comparison with all three layers of A333/B_(4)C/TiC hybrid FGMMC and alloy.Third-body abrasion and tribo-chemical wear were the predominant mechanisms revealed for both composites during worn surface analysis.展开更多
文摘Non lubricated slide performance of functional grade copper matrix composite,fabricated using horizontal centrifuge cast technique was investigated using pin-on-disc tribo-tester.Rate of wear and friction coefficient of the inner wall thickness of hollow cylindrical cast specimen was analyzed using Taguchi based L27 orthogonal array,where the percentage of graphite particles were observed higher.Variable process parameters those influenced the rate of wear directly or indirectly were:applied load(15,25 and 35 N),slide velocity(1.5,2.5 and 3.5 m/s)and slide distance(750,1500 and 2250 m).Rate of wear and friction coefficient showed a proportional dependency with applied load and slide distance,whereas showing a decline during intermediate slide velocity.Signal-to-Noise ratio predicted the minimal tribo-condition,on‘smaller-the-better’basis.Analysis of Variance technique quantified the influence of affecting parameters,along with their interactions.Regression analysis was utilized for the validation of the experimental data.Micrographs and scanning electron microscopy exhibited the wear mechanisms and mechanically mixed layer formation during worn surfaces analysis.
文摘Aluminium hybrid functionally graded metal matrix composites(FGMMCs),meet growing demands for supreme tribo-mechanical performance in automotive and aviation industry.This research experimentally compares the influence of carbide ceramics(B_(4)C,SiC,TiC)as reinforcements,in improving reciprocating tribology performance and mechanical strength of A333 hybrid composites against alloy.Hollow cylindrical samples of A333/6 wt%B_(4)C/4 wt%TiC and A333/6 wt%B_(4)C/4 wt%SiC hybrid FGMMCs were developed using horizontal centrifugal casting.Metallography analysis on both composites revealed increasing ceramic gradient distribution towards outer composite wall.Particle rich zone of A333/B_(4)C/SiC hybrid FGMMC showed maximum micro-hardness(198.9 HV)and tensile strength(267.9 MPa).Elemental mapping confirmed effective distribution of ceramics and detected elemental composition of both composites.Particle rich layer of A333/B_(4)C/SiC hybrid FGMMC exhibited improved wear resistance in comparison with all three layers of A333/B_(4)C/TiC hybrid FGMMC and alloy.Third-body abrasion and tribo-chemical wear were the predominant mechanisms revealed for both composites during worn surface analysis.