Many of the major rivers in India originate from the Himalayas. These rivers have significant contribution from snow and ice which makes these rivers perennial. Due to steep slopes, all such streams have potential sit...Many of the major rivers in India originate from the Himalayas. These rivers have significant contribution from snow and ice which makes these rivers perennial. Due to steep slopes, all such streams have potential sites for hydropower generation. There is a requirement of estimation of the contribution from snow and glacier melt, rainfall contribution and sub surface contribution in the total runoff for sustainable supply of water to the hydropower plants. Considering this aspects, in this study a snowmelt runoff simulation model SNOWMOD suitable for Himalayan basins developed earlier has been modified and applied for simulation of flows. Input to the model such as glacier cover, permanent snow cover, seasonal snow cover generated through remote sensing techniques were used in conjunction with daily maximum and minimum temperature, rainfall and discharge. Two hydropower dam sites on major tributaries (Bhagirathi and DhauliGanga) of River Ganga have been selected for determination of different runoff components. However, though the data available was for a very limited period but the results indicate that these tributaries have significant contribution from snow and ice for long term sustainability of flows to these schemes.展开更多
Streamflow represents the integrated response of a watershed to climatic variables, particularly precipitation and air temperature. In this study, relationships between discharge and hydro meteorological parameters ne...Streamflow represents the integrated response of a watershed to climatic variables, particularly precipitation and air temperature. In this study, relationships between discharge and hydro meteorological parameters near the snout of Gangotri Glacier were investigated. The auto correlations and multi day influence of temperature and rainfall on discharge can provide valuable information about the Glacier response which can be helpful for estimating discharge in data scarce regions. The data for eight continuous ablation seasons (2000-2007) were used investigating correlations, lag cross correlations and multivariate regression analysis between daily mean discharge, daily mean temperature and daily rainfall, whereas last four years data (2008-2011) was used to simulate the daily discharge from the established relations. Snowmelt discharge varies during the rise in the annual temperature cycle in response to the combination of temperature variation and the amount of water held in the evolving snowpack. The discharge and temperature is highly auto correlated. It was found that discharge of a particular day (Qi) is well represented by the regression equation having Qi-1, Ti, and Ri. Such developed regression equation can be used for computing discharge once its input variables are available. The regression equation developed using the eight year data i.e. Qi = 2.962 + 1.011Qi-1?- 0.422Ti + 0.203Ri is used for forecasting of discharge. For all the years discharge was computed with high accuracy (R2?-?0.93).展开更多
文摘Many of the major rivers in India originate from the Himalayas. These rivers have significant contribution from snow and ice which makes these rivers perennial. Due to steep slopes, all such streams have potential sites for hydropower generation. There is a requirement of estimation of the contribution from snow and glacier melt, rainfall contribution and sub surface contribution in the total runoff for sustainable supply of water to the hydropower plants. Considering this aspects, in this study a snowmelt runoff simulation model SNOWMOD suitable for Himalayan basins developed earlier has been modified and applied for simulation of flows. Input to the model such as glacier cover, permanent snow cover, seasonal snow cover generated through remote sensing techniques were used in conjunction with daily maximum and minimum temperature, rainfall and discharge. Two hydropower dam sites on major tributaries (Bhagirathi and DhauliGanga) of River Ganga have been selected for determination of different runoff components. However, though the data available was for a very limited period but the results indicate that these tributaries have significant contribution from snow and ice for long term sustainability of flows to these schemes.
文摘Streamflow represents the integrated response of a watershed to climatic variables, particularly precipitation and air temperature. In this study, relationships between discharge and hydro meteorological parameters near the snout of Gangotri Glacier were investigated. The auto correlations and multi day influence of temperature and rainfall on discharge can provide valuable information about the Glacier response which can be helpful for estimating discharge in data scarce regions. The data for eight continuous ablation seasons (2000-2007) were used investigating correlations, lag cross correlations and multivariate regression analysis between daily mean discharge, daily mean temperature and daily rainfall, whereas last four years data (2008-2011) was used to simulate the daily discharge from the established relations. Snowmelt discharge varies during the rise in the annual temperature cycle in response to the combination of temperature variation and the amount of water held in the evolving snowpack. The discharge and temperature is highly auto correlated. It was found that discharge of a particular day (Qi) is well represented by the regression equation having Qi-1, Ti, and Ri. Such developed regression equation can be used for computing discharge once its input variables are available. The regression equation developed using the eight year data i.e. Qi = 2.962 + 1.011Qi-1?- 0.422Ti + 0.203Ri is used for forecasting of discharge. For all the years discharge was computed with high accuracy (R2?-?0.93).