期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Highly uniform Co-Cu bimetallic sulfides for rechargeable alkaline aqueous zinc batteries
1
作者 Xiaofang Bai Yuwei Zhao +8 位作者 mangwei cui Tianshuo Guo Zijie Tang Chuan Li Heng Gao Shuo Yang Lingzhi Zhao Chunyi Zhi Hongfei Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期521-526,共6页
Rechargeable alkaline aqueous zinc batteries(RAZBs)have attracted increasing attention.However,most RAZBs are hindered by the limited availability of cathode materials.The practical electrochemical performance of most... Rechargeable alkaline aqueous zinc batteries(RAZBs)have attracted increasing attention.However,most RAZBs are hindered by the limited availability of cathode materials.The practical electrochemical performance of most cathode materials is lower than the theoretical value due to their poor electrical conductivity and low utilization capacity.In this work,we develop a facile hydrothermal procedure to prepare highly uniform bimetallic sulfides as novel cathode materials for RAZBs.Copper-cobalt binary metallic oxides materials possess higher conductivity and larger capacity compared with their mono-metal oxides compounds due to bimetallic synergistic effects and multiple oxidation states.Furthermore,bimetallic sulfide compounds have smaller bond energy and longer bond length than their oxides,leading to less structural damage,faster kinetics of electrochemical reactions,and better stability.The as-prepared Co-Cu bimetallic sulfides show enhanced electrochemical performance due to various valences of Co and Cu as well as the existence of S.As a result,aqueous Zn/CuCo_(2)S_(4) battery shows a high specific capacity of 117.4 mAh/g at 4 A/g and a good cycle life of over 8000 cycles.Based on PANa hydrogel electrolytes,a flexible Zn/CuCo_(2)S_(4) battery demonstrates excellent cycling stability.This battery can also meet the requirements of electronic devices with different shapes and performs well in extreme environments,such as freezing,drilling,and hammering.This work opens new avenues to obtain high-rate and long-life cathode materials for RAZBs by utilizing the synergistic effects of bimetallic sulfides and provides a new platform for flexible energy storage devices. 展开更多
关键词 Aqueous zinc batteries Bimetallic sulfides Cathode materials Rate performance Cycling stability
原文传递
In-situ oriented oxygen-defect-rich Mn-N-O via nitridation and electrochemical oxidation based on industrial-scale Mn_(2)O_(3) to achieve high-performance aqueous zinc ion battery 被引量:1
2
作者 Yao Liu Shuailong Guo +7 位作者 Wei Ling mangwei cui Hao Lei Jiaqi Wang Wenzheng Li Qingjiang Liu Lukuan Cheng Yan Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期11-18,I0001,共9页
As a general problem in the field of batteries,materials produced on a large industrial scale usually possess unsatisfactory electrochemical performances.Among them,manganese-based aqueous rechargeable zinc-ion batter... As a general problem in the field of batteries,materials produced on a large industrial scale usually possess unsatisfactory electrochemical performances.Among them,manganese-based aqueous rechargeable zinc-ion batteries(ARZBs)have been emerging as promising large-scale energy storage systems owing to their high energy densities,low manufacturing cost and intrinsic high safety.However,the direct application of industrial-scale Mn2O3(MO)cathode exhibits poor electrochemical performance especially at high current rates.Herein,a highly reversible Mn-based cathode is developed from the industrial-scale MO by nitridation and following electrochemical oxidation,which triples the ion diffusion rate and greatly promotes the charge transfer.Notably,the cathode delivers a capacity of 161 m Ah g^(-1) at a high current density of 10 A g^(-1),nearly-three times the capacity of pristine MO(60 m Ah g^(-1)).Impressive specific capacity(243.4 m Ah g^(-1))is obtained without Mn^(2+) additive added in the electrolyte,much superior to the pristine MO(124.5 m Ah g^(-1)),suggesting its enhanced reaction kinetics and structural stability.In addition,it possesses an outstanding energy output of 368.4 Wh kg^(-1) at 387.8 W kg^(-1),which exceeds many of reported cathodes in ARZBs,providing new opportunities for the large-scale application of highperformance and low-cost ARZBs. 展开更多
关键词 Aqueous rechargeable zinc-ion battery Mn-based cathode Oxygen defect NITRIDATION Electrochemical oxidation
在线阅读 下载PDF
CuS Electrode for All-pH Electrolyte in Aqueous Batteries
3
作者 Liangliang Yang mangwei cui +2 位作者 Qingjiang Liu Hao Lei Yan Huang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第6期64-73,共10页
With their excellent safety, affordability, environmental friendliness and high ionic conductivity, aqueous batteries are prospective contenders to replace lithium-ion batteries. However, the pH of aqueous electrolyte... With their excellent safety, affordability, environmental friendliness and high ionic conductivity, aqueous batteries are prospective contenders to replace lithium-ion batteries. However, the pH of aqueous electrolyte might impact the battery’s electrochemical performance and even its normal operation. It is critical to develop an electrode that can work in different pH settings. The hydrothermal method and vulcanization treatment were used to successfully create copper sulfide(CuS) nanosheet in this work. It can store and transport nonmetal and metal ions as well as polyvalent ions with a high charge radius ratio, and function normally under a variety of pH conditions. The CuS electrode has a considerable capacity(900 mA·h/g) and rate performance under alkaline conditions, as well as an ultra-long discharge platform, which contribute to 80% of the total capacity. 展开更多
关键词 aqueous battery copper sulfide all-pH electrolyte
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部