Generating electricity from wave is predicted to be a new source of renewable energy conversion gaining more attention and is considered in various countries as promising renewable resource. Being surrounded by sea, M...Generating electricity from wave is predicted to be a new source of renewable energy conversion gaining more attention and is considered in various countries as promising renewable resource. Being surrounded by sea, Malaysia has the advantage of tapping energy from the nearest sea wave. However, Malaysia has low wave climate compared to other regions. On top of that, the technologies available for extracting this energy are still in infancy stage. This study explored the potential of generating electricity from low height wave energy. The recorded average electricity can be generated from the lab scale device which is 0.224 V, 0.175 A and 0.039 W. The data collected from Mukah Beach show that the maximum voltage recorded is 1.021 V, maximum current of 0.86 A and highest power of 0.878 W. By comparing results from both locations, the difference is almost 10-fold which validates the wave maker built in laboratory with 1:10 ratio. The standard deviation of all the outputs is small which indicates that the output generation from low height wave would be consistent. Although the output is small, it could be paired together to make a larger system to generate higher output. This study concludes that the developed lab scale model is useful for harnessing electrical energy from sea wave. The future direction of research would be to optimize the current method to maximize energy capture from sea wave. Another direction for future study is to make a system comprised of a large number of such devices to generate higher output.展开更多
Empty fruit bunch(EFB)is an industrial waste that is abundantly available in Malaysia.Traditionally,EFBs were burned and dumped on the plantation site,resulting in global warming pollution from methane and carbon diox...Empty fruit bunch(EFB)is an industrial waste that is abundantly available in Malaysia.Traditionally,EFBs were burned and dumped on the plantation site,resulting in global warming pollution from methane and carbon dioxide.In this study,the EFB was transformed into a high-surface area of activated biochar through a microwave physicochemical approach involving the combination of steam followed by a hydroxide mixture for palm oil mill effluent(POME)treatment.It was found that BET(Brunauer-Emmett-Teller)surface area and total pore volume of activated biochar were 365.60 m^(2)/g and 0.16 cm^(3)/g,respectively.The surface morphology of activated biochar revealed the formation of well-developed pores that can potentially be used as adsorbents to treat POME.The removal efficiency of biochemical oxygen demand(BOD)and chemical oxygen demand(COD)of POME achieved 75%-55%,respectively.This study offers insight into the transformation of industrial waste into value-added products for sustainable environmental remediation.展开更多
文摘Generating electricity from wave is predicted to be a new source of renewable energy conversion gaining more attention and is considered in various countries as promising renewable resource. Being surrounded by sea, Malaysia has the advantage of tapping energy from the nearest sea wave. However, Malaysia has low wave climate compared to other regions. On top of that, the technologies available for extracting this energy are still in infancy stage. This study explored the potential of generating electricity from low height wave energy. The recorded average electricity can be generated from the lab scale device which is 0.224 V, 0.175 A and 0.039 W. The data collected from Mukah Beach show that the maximum voltage recorded is 1.021 V, maximum current of 0.86 A and highest power of 0.878 W. By comparing results from both locations, the difference is almost 10-fold which validates the wave maker built in laboratory with 1:10 ratio. The standard deviation of all the outputs is small which indicates that the output generation from low height wave would be consistent. Although the output is small, it could be paired together to make a larger system to generate higher output. This study concludes that the developed lab scale model is useful for harnessing electrical energy from sea wave. The future direction of research would be to optimize the current method to maximize energy capture from sea wave. Another direction for future study is to make a system comprised of a large number of such devices to generate higher output.
基金support by University of College Technology Sarawak under University Grant Scheme (Project No.UCTS/RESEARCH/4/2018/17) to perform the research.
文摘Empty fruit bunch(EFB)is an industrial waste that is abundantly available in Malaysia.Traditionally,EFBs were burned and dumped on the plantation site,resulting in global warming pollution from methane and carbon dioxide.In this study,the EFB was transformed into a high-surface area of activated biochar through a microwave physicochemical approach involving the combination of steam followed by a hydroxide mixture for palm oil mill effluent(POME)treatment.It was found that BET(Brunauer-Emmett-Teller)surface area and total pore volume of activated biochar were 365.60 m^(2)/g and 0.16 cm^(3)/g,respectively.The surface morphology of activated biochar revealed the formation of well-developed pores that can potentially be used as adsorbents to treat POME.The removal efficiency of biochemical oxygen demand(BOD)and chemical oxygen demand(COD)of POME achieved 75%-55%,respectively.This study offers insight into the transformation of industrial waste into value-added products for sustainable environmental remediation.