Optical bound states in the continuum(BICs)provide a way to engineer very narrow resonances in photonic crystals.The extended interaction time in these systems is particularly promising for the enhancement of nonlinea...Optical bound states in the continuum(BICs)provide a way to engineer very narrow resonances in photonic crystals.The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices.However,the achievable interaction strength is limited by the purely photonic character of optical BICs.Here,we mix the optical BIC in a photonic crystal slab with excitons in the atomically thin semiconductor MoSe_(2) to form nonlinear exciton-polaritons with a Rabi splitting of 27 meV,exhibiting large interaction-induced spectral blueshifts.The asymptotic BIC-like suppression of polariton radiation into the far field toward the BIC wavevector,in combination with effective reduction of the excitonic disorder through motional narrowing,results in small polariton linewidths below 3 meV.Together with a strongly wavevector-dependent Q-factor,this provides for the enhancement and control of polariton–polariton interactions and the resulting nonlinear optical effects,paving the way toward tuneable BIC-based polaritonic devices for sensing,lasing,and nonlinear optics.展开更多
基金funding from the Ministry of Education and Science of the Russian Federation through Megagrant No.14.Y26.31.0015the UK EPSRC grant EP/P026850/1+4 种基金the project“Hybrid polaritonics”of Icelandic Science Foundationfunded by RFBR according to the research project№18-32-00527funded by RFBR,project No 19-32-90269partly funded by the Russian Science Foundation(Grant No.19-72-30003)support from the Government of the Russian Federation through the ITMO Fellowship and Professorship Program.
文摘Optical bound states in the continuum(BICs)provide a way to engineer very narrow resonances in photonic crystals.The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices.However,the achievable interaction strength is limited by the purely photonic character of optical BICs.Here,we mix the optical BIC in a photonic crystal slab with excitons in the atomically thin semiconductor MoSe_(2) to form nonlinear exciton-polaritons with a Rabi splitting of 27 meV,exhibiting large interaction-induced spectral blueshifts.The asymptotic BIC-like suppression of polariton radiation into the far field toward the BIC wavevector,in combination with effective reduction of the excitonic disorder through motional narrowing,results in small polariton linewidths below 3 meV.Together with a strongly wavevector-dependent Q-factor,this provides for the enhancement and control of polariton–polariton interactions and the resulting nonlinear optical effects,paving the way toward tuneable BIC-based polaritonic devices for sensing,lasing,and nonlinear optics.