A brain tumor is a disease in which abnormal cells form a tumor in the brain.They are rare and can take many forms,making them difficult to treat,and the survival rate of affected patients is low.Magnetic resonance im...A brain tumor is a disease in which abnormal cells form a tumor in the brain.They are rare and can take many forms,making them difficult to treat,and the survival rate of affected patients is low.Magnetic resonance imaging(MRI)is a crucial tool for diagnosing and localizing brain tumors.However,themanual interpretation of MRI images is tedious and prone to error.As artificial intelligence advances rapidly,DL techniques are increasingly used in medical imaging to accurately detect and diagnose brain tumors.In this study,we introduce a deep convolutional neural network(DCNN)framework for brain tumor classification that uses EfficientNet-B6 as the backbone architecture and adds additional layers.The model achieved an accuracy of 99.10%on the public Brain Tumor MRI datasets,and we performed an ablation study to determine the optimal batch size,optimizer,loss function,and learning rate to maximize the accuracy and robustness of the model,followed by K-Fold cross-validation and testing the model on an independent dataset,and tuning Hyperparameters with Bayesian Optimization to further enhance the performance.When comparing our model to other deep learning(DL)models such as VGG19,MobileNetv2,ResNet50,InceptionV3,and DenseNet201,aswell as variants of the EfficientNetmodel(B1–B7),the results showthat our proposedmodel outperforms all othermodels.Our investigational results demonstrate superiority in terms of precision,recall/sensitivity,accuracy,specificity,and F1-score.Such innovations can potentially enhance clinical decision-making and patient treatment in neurooncological settings.展开更多
基金funded by the King Saud University,Riyadh,Saudi Arabia,for funding this work through the Researchers Supporting Research Funding program,(ORF-2025-1268).
文摘A brain tumor is a disease in which abnormal cells form a tumor in the brain.They are rare and can take many forms,making them difficult to treat,and the survival rate of affected patients is low.Magnetic resonance imaging(MRI)is a crucial tool for diagnosing and localizing brain tumors.However,themanual interpretation of MRI images is tedious and prone to error.As artificial intelligence advances rapidly,DL techniques are increasingly used in medical imaging to accurately detect and diagnose brain tumors.In this study,we introduce a deep convolutional neural network(DCNN)framework for brain tumor classification that uses EfficientNet-B6 as the backbone architecture and adds additional layers.The model achieved an accuracy of 99.10%on the public Brain Tumor MRI datasets,and we performed an ablation study to determine the optimal batch size,optimizer,loss function,and learning rate to maximize the accuracy and robustness of the model,followed by K-Fold cross-validation and testing the model on an independent dataset,and tuning Hyperparameters with Bayesian Optimization to further enhance the performance.When comparing our model to other deep learning(DL)models such as VGG19,MobileNetv2,ResNet50,InceptionV3,and DenseNet201,aswell as variants of the EfficientNetmodel(B1–B7),the results showthat our proposedmodel outperforms all othermodels.Our investigational results demonstrate superiority in terms of precision,recall/sensitivity,accuracy,specificity,and F1-score.Such innovations can potentially enhance clinical decision-making and patient treatment in neurooncological settings.