期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Semi-continuous casting of magnesium alloy AZ91 using a filtered melt delivery system 被引量:3
1
作者 mainul hasan Latifa Begum 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第4期283-301,共19页
A 3-D numerical simulation of an industrial-sized slab caster for magnesium alloy AZ91 has been carried out for the steady state operational phase of the caster.The simulated model consists of an open-top melt deliver... A 3-D numerical simulation of an industrial-sized slab caster for magnesium alloy AZ91 has been carried out for the steady state operational phase of the caster.The simulated model consists of an open-top melt delivery system fitted with a porous filter near the hot-top.The melt flow through the porous filter was modeled on the basis of Brinkmann-Forchimier-Extended non-Darcy model for turbulent flow.An in-house 3-D CFD code was modified to account for the melt flow through the porous filter.Results are obtained for four casting speeds namely,40,60,80,and 100 mm/min.The metal-mold contact region as well as the convective heat transfer coefficient at the mold wall were also varied.In addition to the above,the Darcy number for the porous media was also changed.All parametric studies were performed for a fixed inlet melt superheat of 64℃.The results are presented pictorially in the form of temperature and velocity fields.The sump depth,mushy region thickness,solid shell thickness at the exit of the mold and axial temperature profiles are also presented and correlated with the casting speed through regression analysis.©2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University. 展开更多
关键词 Magnesium alloy AZ91 VDC casting Slab caster 3D CFD modeling Porous filter Non-Darcy model Turbulent melt flow SOLIDIFICATION Mushy region
在线阅读 下载PDF
On numerical modeling of low-head direct chill ingot caster for magnesium alloy AZ31 被引量:2
2
作者 mainul hasan Latifa Begum 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第4期275-286,共12页
A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head(LH)vertical Direct Chill(DC)rolling ingot caster for the common magnesium alloy AZ31.The model used in this study takes into account t... A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head(LH)vertical Direct Chill(DC)rolling ingot caster for the common magnesium alloy AZ31.The model used in this study takes into account the coupled laminar/turbulent melt flow and solidification aspects of the process and is based on the control-volume finite-difference approach.Following the aluminum/magnesium DC casting industrial practices,the LH mold is taken as 30 mm with a hot top of 60 mm.The previously verified in-house code has been modified to model the present casting process.Important quantitative results are obtained for four casting speeds,for three inlet melt pouring temperatures(superheats)and for three metal-mold contact heat transfer coefficients for the steady state operational phase of the caster.The variable cooling water temperatures reported by the industry are considered for the primary and secondary cooling zones during the simulations.Specifically,the temperature and velocity fields,sump depth and sump profiles,mushy region thickness,solid shell thickness at the exit of the mold and axial temperature profiles at the center and at three strategic locations at the surface of the slab are presented and discussed. 展开更多
关键词 Low-head DC caster Magnesium alloy AZ31 3D CFD modeling Turbulent melt flow Solidification Mushy region thickness Sump profile
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部